Затем был исследован ряд металлов, атомы которых расположены в вершинах шестигранных призм с разными расстояниями между их основаниями. Исследования показали, что трение уменьшается с увеличением высоты призм (см. центральную часть рис.1). Наименьшим трением обладают металлы с максимальным отношением расстояния между основаниями призм к расстоянию между боковыми гранями. Этот экспериментальный результат согласуется с выводами теории деформации металлов.
На следующем этапе в качестве объекта исследования был выбран титан, о котором известно, что он имеет гексагональную структуру и плохие фрикционные характеристики. Чтобы улучшить фрикционные характеристики титана, стали исследовать его сплавы с другими металлами, присутствие которых должно было увеличить размеры атомных решеток. Как и ожидалось, с увеличением расстояния между основаниями призм трение резко уменьшилось (см. правую часть рис.1). В настоящее время проводятся дополнительные эксперименты по дальнейшему улучшению свойств титановых сплавов. Например, мы можем "упорядочить" сплав, т.е. с помощью термообработки расположить атомы разных элементов более подходящим образом и исследовать, как это повлияет на трение. Новые достижения в этой области повысят надежность машин, имеющих вращающиеся части, и, по-видимому, откроют широкие возможности в будущем.
Хотя может создаться впечатление, что в последнее время мы достигли больших успехов в разработке теплостойких материалов, прогресс в исследовании космического пространства в следующие 35 лет будет тесно связан с разработкой новых материалов, которые могли бы работать при высоких температурах в течение многих часов, а в некоторых случаях и лет.
На рис.2 показано, как это важно. По оси ординат здесь отложено время работы в часах, а по оси абсцисс - рабочая температура в градусах Цельсия. В заштрихованной области от 1100 до 3300°С единственными металлическими материалами, которые можно использовать, являются тугоплавкие металлы. На оси ординат горизонтальной чертой отмечена продолжительность работы, равная одному году. Область рабочих параметров ядерного ракетного двигателя ограничена температурами от 2100 до 3200° С и продолжительностью работы от 15 мин до 6 час. (Эти цифры являются весьма приближенными и приводятся только для ориентировочного определения границ области рабочих параметров.)
Область с надписью "гиперзвуковые самолеты" характеризует условия работы материалов обшивки. Здесь требуется гораздо большая продолжительность работы. Для космических аппаратов многократного использования называют времена работы всего от 60 до 80 час, однако на самом деле может потребоваться продолжительность работы порядка тысяч часов в интервале температур от 1320 до 1650° С и более.
По рис.2 можно судить о значении тугоплавких металлов для решения задач, которые ставит программа исследования космического пространства. Некоторые из этих материалов уже применяются, и я уверена, что они будут усовершенствованы и приобретут с течением времени еще большее значение.
Иногда можно услышать, что современная технология материалов на самом деле не наука, а скорее высокоразвитое искусство. Возможно, это отчасти и так, но я уверена, что материаловедение и технология материалов уже достигли весьма высокого уровня развития и сыграют большую роль в жизни нашей страны.
Конструкции космических аппаратов
Обратимся теперь к вопросам конструирования космических аппаратов. На рис.3 указаны основные конструктивные проблемы, возникающие при проектировании современных ракет-носителей и космических летательных аппаратов. К ним относятся: нагрузки, действующие на конструкцию, динамика и механика полета; разработка конструкций, выдерживающих большие тепловые нагрузки; защита от воздействия условий космического пространства, а также разработка новых конструкций и комбинаций материалов для применения в будущем.
Рис .3. Конструкции космических аппаратов.
Разработка конструкций космических аппаратов находится еще на ранней стадии развития и базируется на опыте конструирования самолетов и баллистических ракет. Из рис.4 следует, что большие современные ракеты-носители во многом родственны баллистическим ракетам. К отличительным особенностям их конфигураций следует отнести большое удлинение, снижающее сопротивление атмосферы, и большой объем, занимаемый топливом. Вес топлива может составлять от 85 до 90% стартового веса ракеты-носителя. Удельный вес конструкции очень мал, так что по существу это тонкостенная гибкая оболочка. При сегодняшней высокой стоимости единицы веса полезной нагрузки, выведенной на орбиту или траекторию полета к Луне и планетам, особо выгодно уменьшение веса основной конструкции до допустимого минимума. Еще более остро встают проблемы конструирования в случае использования в качестве топливных компонентов жидких водорода и кислорода, имеющих малый удельный вес, вследствие чего возникает потребность в больших объемах для размещения топлива.
Рис .4. Большие ракеты-носители.
Конструктор будущих ракет-носителей столкнется со многими новыми сложными проблемами. Ракеты-носители, по всей вероятности, будут больших размеров, станут сложней и дороже. Для многократного их использования без больших затрат на обратную доставку или ремонт потребуется решить важные задачи конструирования и технологии материалов.
Необычные требования, предъявляемые к разным типам космических аппаратов будущего, уже активизировали поиски новых типов конструкций и производственных процессов.
Требования защиты от опасностей, ожидающих нас в космическом пространстве, таких, как метеориты, жесткое и тепловое излучение, в значительной мере активизируют исследования, проводимые с целью создания конструкций космических аппаратов. Например, при длительном хранении жидкого водорода и других криогенных жидкостей в условиях космического пространства утечка компонентов топлива через дренажную систему и метеоритные пробоины в топливных баках должна быть практически исключена. Значительные успехи достигнуты в области разработки изоляционных материалов, обладающих исключительно малой теплопроводностью. Сейчас можно обеспечить хранение топлива в течение времени нахождения на стартовой площадке и нескольких оборотов вокруг Земли. Однако при длительном хранении в условиях космического пространства сроком до одного года возникает очень сложная проблема, связанная с притоком тепла через элементы конструкции баков и трубопроводы.
Другие проблемы космического полета, такие, как проблема складывающихся больших космических аппаратов или их частей в процессе вывода на орбиту с последующей их сборкой в космическом пространстве, также потребуют новых конструктивных решений. В то же время в течение космического полета на космический аппарат не воздействуют ни гравитационные, ни аэродинамические силы, что расширяет область возможных решений при проектировании. На фиг.5 показан пример необычного конструктивного решения, возможного только в условиях космического пространства. Это один из вариантов орбитального радиотелескопа, имеющего гораздо большие размеры, чем те, которые можно было бы обеспечить на Земле.
Такие устройства нужны для изучения естественного радиоизлучения звезд, галактик и других небесных объектов. Одна из полос радиочастот, представляющих интерес для астрономов, лежит в диапазоне от 10 Мгц и ниже. Радиоволны с такой частотой не проходят через земную ионосферу. Для приема низкочастотного радиоизлучения необходимы орбитальные антенны чрезвычайно больших размеров. В левой части фиг.5 показана кривая зависимости диаметра антенны от частоты принимаемого излучения. Видно, что с уменьшением частоты диаметр антенны увеличивается и для приема радиоволн с частотой менее 10 Мгц нужны антенны диаметром более 1,5 км.
Рис 5. Новые конструкции. Орбитальные антенны.
Антенну таких размеров нельзя вывести на орбиту, да и ее вес при использовании обычных принципов проектирования намного превысит возможности самых больших ракет-носителей. Даже с учетом отсутствия силы тяжести проектирование таких антенн представляет большие трудности. Например, если сделать рефлектор антенны сплошным из алюминиевой фольги толщиной всего 0,038 мм, то и тогда вес материала поверхности при диаметре антенны 1,6 км будет составлять 214 т. К счастью, благодаря малой частоте принимаемого радиоизлучения поверхность антенны можно сделать решетчатой. Последние достижения в области больших ажурных конструкций позволяют выполнить решетку из тонких нитей. При этом материал, образующий поверхность антенны, будет весить от 90 до 140 кг. Такая конструкция позволит вывести антенну на орбиту и затем собрать ее. Одновременно можно обеспечить плотную упаковку антенны вместе с системами стабилизации и энергообеспечения.
Жесткое излучение в космическом пространстве по-прежнему будет главным разрушительным фактором для запускаемых в космос аппаратов. Это разрушение связано отчасти с бомбардировкой космических аппаратов протонами больших энергий в радиационных поясах, а также с солнечными вспышками. Исследование эффектов, возникающих при такой бомбардировке, указывает на необходимость изучения сущности механизмов разрушения и определения характеристик материалов, используемых в качестве защитных экранов.
Рис.6. Новые принципы экранирования.
1 - сверхпроводящие катушки; 2 - магнитное поле; 3 - положительный заряд космического аппарата; 4 - поглощающий экран; 5 -плазменная защита.