По размерам особей представителей почвенной фауны можно разделить на четыре группы (G. Bachelier, 1963):
а) микрофауна — организмы, размер которых менее 0,2 мм; это главным образом протозоа, нематоды, ризоподы, эхинококки, живущие во влажной почвенной среде;
б) мезофауна — животные размером от 0,2 до 4 мм; это микроартроподы, мельчайшие насекомые, некоторые мириаподы и специфические черви, приспособленные к жизни в почве, имеющей достаточно влажный воздух;
в) макрофауна — состоит из животных размером от 4 до 80 мм; это земляные черви, моллюски, насекомые (муравьи, термиты и др.);
г) мегафауна — размер животных более 80 мм — крупные насекомые, крабы, скорпионы, кроты, змеи, черепахи, мелкие и крупные грызуны, лисы, барсуки и другие животные, роющие в почвах ходы и норы.
Среди почвенных животных абсолютно преобладают беспозвоночные. Их суммарная биомасса в 1000 раз больше общей биомассы позвоночных. Функции беспозвоночных и позвоночных животных важны и разнообразны; одна из них — разрушение, измельчение и поедание органических остатков на поверхности почвы и внутри ее.
Примером необычайно интенсивного воздействия на почву служит работа дождевых червей. Более 100 лет тому назад Ч. Дарвин (1882), указывая на огромную работу червей, писал: «... вряд ли найдутся другие животные, которые играли бы столь большую роль в истории мира, как дождевые черви». Очень образную и глубокую характеристику деятельности земляных червей дал русский почвовед Н. А. Димо (1938), писавший, что под воздействием червей из года в год, из тысячелетия в тысячелетие накапливаются в почвах черты биогенного сложения и структуры, специфические биохимические свойства, невоспроизводимые никаким другим агентом природы.
На площади в 1 га черви ежегодно пропускают через свой кишечник в разных почвенно-климатических зонах от 50 до 600 т мелкозема. Вместе с минеральной массой при этом поглощается и перерабатывается огромное количество органических остатков. В среднем экскременты червей (копролиты) составляют до 25 т/га•год. При этом осуществляется работа по перераспределению переработанного органического вещества не только в профиле почв, но и по их поверхности.
Столь же большая работа производится насекомыми, их личинками и другими животными. Вторая функция почвенных животных выражается в накоплении в их телах элементов питания и главным образом в синтезе азотсодержащих соединений белкового характера. После завершения жизненного цикла животного наступает распад тканей и возврат в почву накопленных в телах животных веществ и энергии.
Переработанное почвенной фауной органическое вещество является прекрасной средой для поселения почвенной микрофлоры. Особенно охотно поселяются микроорганизмы на обогащенных питательными веществами экскрементах животных.
Деятельность роющих животных оказывает большое влияние на перемещение масс грунта и почвы, на формирование своеобразного микро- и нанорельефа. В некоторых случаях перерытость почв и выбросы на поверхность достигают таких размеров, что возникает необходимость введения в номенклатуру почв специальных определений (например, карбонатный перерытый чернозем). Профиль таких почв имеет рыхлое, кавернозное строение, почвенные горизонты часто перемещены и трансформированы.
Совершенно своеобразную и исключительно важную роль в процессах почвообразования играют микроорганизмы. Если высшие растения являются главными продуцентами биологической массы, то микроорганизмам принадлежит основная роль в глубоком и полном разрушении органических веществ. Особенность почвенных микроорганизмов состоит в способности их разлагать сложнейшие высокомолекулярные соединения до простых конечных продуктов: газов (углекислота, аммиак и др.), воды и простых минеральных соединений.
Каждому типу почв, каждой почвенной разности свойственно свое, специфическое профильное распределение микроорганизмов. При этом численность микроорганизмов и их видовой состав отражают важнейшие свойства почвы — запасы органического вещества, количество и качество гумуса, содержание питательных элементов, реакцию, влагообеспеченность, степень аэрированности. Из рис. 50 видно, что в черноземной почве, обладающей высокими запасами гумуса и хорошими воздушными и водно-физическими свойствами, численность микроорганизмов значительно превышает их численность в дерново-подзолистой почве.Главная масса микроорганизмов сосредоточена в пределах верхней 20-сантиметровой толщи почвы, наиболее густо пронизанной корнями и заселенной мезофауной. Биомассу грибов и бактерий в пахотном слое почвы составляет до 5 т/га, численность бактерий достигает миллиардов клеток в 1 г почвы, а длина грибных гиф — до 1000 м в 1 га почвы (И. П. Бабьева, Г. М. Зенова, 1983).
Микроорганизмы принимают самое активное участие в процессе гумусообразования, являющемся по природе своей процессом биохимическим. В то же время определенные группы микроорганизмов относятся к активным деструктурам гумуса. Однако роль почвенных микроорганизмов не ограничивается воздействием только на органическое вещество почвы; прижизненные продукты, выделяемые микроорганизмами во внешнюю среду, оказывают глубокое разрушающее действие на первичные и вторичные минералы, слагающие почвенную массу и материнскую породу. В этих процессах участвуют водоросли, лишайники, грибы, бактерии и актиномицеты.
Необходимо отметить большое влияние микроорганизмов на состав почвенного воздуха. Колебания в содержании таких важнейших компонентов газовой фазы, как кислород и углекислота, почти на 100% регулируются жизнедеятельностью почвенных микроорганизмов.
Исключительно велика роль микроорганизмов в циклах превращения азотсодержащих соединений. Азот, являясь важнейшим элементом питания растений, в почве содержится в ограниченных количествах и преимущественно в труднодоступной форме. Источником поступления азота в почву может быть как азот атмосферного воздуха, так и азот, входящий в состав различных органических остатков (опад, подстилка, степной войлок, корни растений, трупы животных).
Органические соединения азота, преимущественно белковые, подвергаясь сложным процессам трансформации, преобразуются в конце цикла в формы соединений, доступные для потребления их высшими зелеными растениями. Значительная часть азота освобождается при биохимических процессах разложения почвенного гумуса.
Одним из важнейших звеньев в циклах превращения азота является фиксация его почвенными микроорганизмами. Общепланетарная продукция микробной фиксации азота составляет от 270 до 330 млн. т/год, из них 160—170 млн. т/год дает суша и 70—160 млн. т/год — океан (И. П. Бабьева, Г. М. Зенова, 1983). Одним из представителей азотфиксирующих микроорганизмов являются клубеньковые бактерии, образующие симбиотическое сообщество с бобовыми растениями. Бобовые обогащают почву азотом и улучшают ее азотный баланс. Они накапливают от 60 до 300 кг азота на гектар в год. При этом 2/3 усвоенного азота берется из воздуха за счет фиксации его клубеньковыми бактериями.
Некоторая часть молекулярного азота воздуха фиксируется в почве так называемыми свободноживущими азотфиксаторами. Однако их деятельность значительно уступает деятельности симбиотических микроорганизмов. За год несимбиотрофные почвенные микроорганизмы накапливают в почвах средней полосы примерно 10—25 кг N2 на гектар, а в субтропической и тропической зонах до 50—100 кг/га (И. П. Бабьева, Г. М. Зенова, 1983).
В заключение можно отметить, что вся почвенная биота находится в тесной связи с эколого-географическими закономерностями распределения почв по лику земного шара и отражает специфику взаимоотношений, складывающихся между представителями органического мира и другими факторами почвообразователями.
1.4. РОЛЬ МАТЕРИНСКОЙ ПОРОДЫ В ПОЧВООБРАЗОВАНИИ
Материнская порода посредством своего вещественного состава оказывает большое влияние на гранулометрический, химический и минералогический состав почв, их физическое и физико-механические свойства, водно-воздушный, тепловой и пищевой режимы. Особенно отчетливо взаимосвязь между свойствами почв и характером материнской породы проявляется на ранних стадиях почвообразования. На этих стадиях первичная, примитивная почва в максимальной степени отражает свойства, присущие коре выветривания породы, на которой эта почва образуется. Однако и с возрастом почвы, по достижению ею зрелости, эта взаимосвязь не утрачивается полностью, она лишь становится менее отчетливой, завуалированной той глубокой трансформацией минеральной части почвы, которая является результатом выветривания и почвообразования.
Состав и свойства почвообразующей породы влияют на скорость почвообразовательного процесса и его направленность. Так, на маломощной коре выветривания очень плотных гранитов и гранитогнейсов Карелии за длительный период времени сформировались примитивные, слабо развитые подзолистые почвы, мощность профиля которых не превышает 10—15 см. В то же время в депрессиях и межсклоновых равнинах той же территории, выполненных продуктами ледниковых отложений — валунными песками, супесями, легкими опесчаненными суглинками, распространены довольно мощные подзолистые почвы с хорошо развитым профилем до 1 —1,5 м.
Уровень почвенного плодородия весьма четко коррелирует со свойствами и составом почвообразующей породы. Известно, что при выветривании кислых магматических пород (граниты, гранитогнейсы), а таже песчаников на их элювии формируются почвы с низким уровнем природного плодородия. Аналогичная картина наблюдается при развитии почв на песках. В то же время на продуктах выветривания средних (диорит, андезит) и основных (группа габробазальта) пород, богатых питательными элементами и щелочно-земельными катионами, формируются почвы с высоким уровнем природного плодородия — насыщенные основаниями, с нейтральной или слабокислой реакцией, с более высоким содержанием насыщенного гумуса, глинистые и суглинистые по гранулометрическому составу.