- четвертый общий принцип автоматизированного энергоучета определяет взаимосвязь текущих и перспективных тарифных систем с тарифными возможностями конкретных электронных счетчиков: "тарифные характеристики счетчика должны позволять реализовывать как существующие тарифы, так и перспективные тарифы, отличающиеся от действующих количеством тарифных зон в сторону их увеличения". Срок службы электронного счетчика в среднем составляет 30 лет. С высокой вероятностью можно прогнозировать неоднократное изменение действующих тарифных систем за этот срок службы.
В нашей стране единицей тарифной зоны является получас и поэтому основой хранимой базы данных электронных многотарифных счетчиков должны стать графики на основе средней получасовой мощности нагрузки (срезы, или профили нагрузки), из которых можно алгебраически сформировать те или иные тарифные зоны (как внутри счетчика, так и на верхнем уровне АСКУЭ). Глубина хранения получасового графика нагрузки в счетчике по каждому направлению учета (активная и/или реактивная энергия прямого и/или обратного потока) не должна быть меньше 60 суток (за прошлый и текущий месяцы). В ряде применений предпочтительно использование счетчиков с программируемым количеством суточных тарифных зон, вплоть до 48. Если в процессе функционирования АСКУЭ переход к новой тарифной системе требует полной замены всех ранее установленных электронных счетчиков, значит выбор счетчиков для АСКУЭ был сделан неверно.
- пятый общий принцип автоматизированного энергоучета определяет отношение в АСКУЭ к интерфейсам и протоколам доступа к хранимым базам данных электронных электросчетчиков: "физический цифровой интерфейс счетчиков должен относиться к классу международных стандартных (де-факто или де-юре) интерфейсов, а логический интерфейс (протокол) должен быть открыт и иметь полное однозначное и непротиворечивое описание на государственном языке Республики Беларусь".
Существующие электронные электросчетчики различных изготовителей имеют, как правило, различные физические и логические интерфейсы, что создает для пользователей значительные трудности по объединению этих приборов в рамках АСКУЭ (унификация интерфейсов должна стать задачей номер один для изготовителей электронных счетчиков). Выбор конкретного типа физического интерфейса (например, двухточечного типа RS-232 или многоточечного магистрального типа RS-485) зависит от особенностей конкретной АСКУЭ, но в случае сбора данных с группы счетчиков предпочтение следует отдавать многоточечным магистральным интерфейсам, которые требуют меньших затрат оборудования для организации канала связи. При выборе логического интерфейса предпочтение следует отдавать международным протоколам, адаптированным к задачам энергоучета (типа, например, DLMS), а также протоколам типа "ведущий-ведомый", дающим возможность адресоваться к отдельным элементам и уровням хранимой базы данных счетчиков, что позволяет уменьшить загрузку канала связи избыточной или ненужной информацией и минимизировать тем самым время сеанса связи со счетчиком.
- шестой общий принцип автоматизированного энергоучета определяет взаимосвязь АСКУЭ основного уровня с верхним уровнем АСКУЭ субъекта энергосистемы или субъекта рынка электроэнергии: "АСКУЭ субъекта строится на основе корпоративной вычислительной сети (КВС), на сервер или рабочие станции которых передаются по соответствующим каналам связи непосредственно со счетчиков или через устройства сбора и передачи данных (УСПД) промежуточного уровня АСКУЭ метрологически аттестованные измерительные данные электронных электросчетчиков". В простейшем случае вместо КВС на верхнем уровне небольшой АСКУЭ может быть размещен автономный или входящий в локальную сеть субъекта персональный компьютер.
Верхний уровень АСКУЭ субъектов должен быть образован не специализированными многоуровневыми системами учета, а персональными компьютерами или корпоративными компьютерными сетями, которые в настоящее время интенсивно создаются и развиваются в энергосистемах, филиалах и районах электросетей, на крупных обслуживаемых подстанциях, на промышленных предприятиях.
Идеальным техническим решением проблемы передачи данных энергоучета из метрологически аттестованных электронных счетчиков основного уровня АСКУЭ к конечным потребителям этих данных (пользователям корпоративных компьютерных сетей субъектов), минимизирующим цепочку промежуточных ретрансляций, задержек связи и их влияний на достоверность передаваемых данных, стало бы индивидуальное подключение каждого счетчика к глобальной среде сбора и передачи данных (например, к сети мобильной связи GSM через индивидуальные GSM - модемы каждого счетчика). Однако такое решение на сегодняшний день является экономически спорным из-за высокой стоимости индивидуальных средств подключения счетчика к глобальной сети и соответствующих услуг этой сети по передаче данных.
Более предпочтительным по экономическим причинам является использование на промежуточном уровне АСКУЭ, связанном с основным уровнем электронных электросчетчиков, мало- или многоканальных устройств сбора и передачи данных (УСПД). Целесообразно использовать, по меньшей мере, два различных вида таких устройств, различающихся дополнительными функциями: а) собственно УСПД, б) модифицированные (в частности, метрологически аттестуемые) УСПД-М. Первые должны реализовать доступ по цифровым интерфейсам к метрологически аттестованным данным группы электронных счетчиков с транзитной передачей этих данных (без обработки, нарушающей их метрологию, в крайнем случае с накоплением данных учета, например, получасовых графиков нагрузки со счетчиков) в канал связи корпоративной компьютерной сети соответствующего субъекта, а вторые, наряду с функцией сбора и передачи данных, могут осуществлять и их обработку (например, алгебраическое суммирование данных нескольких счетчиков), порождая тем самым новые разновидности данных энергоучета (группы или супергруппы учета).
Первые устройства (они не требуют метрологической аттестации и поверки в качестве средств измерения, что значительно снижает эксплуатационные издержки) предназначены для массового использования во многих АСКУЭ, где будут установлены только электронные счетчики с хранимыми базами данных, доступными по быстродействующим протоколам и каналам связи, а вторые - для АСКУЭ, где еще используются счетчики с импульсными выходами, или для АСКУЭ со специальными коммерческими требованиями. Применение УСПД позволяет существенно сократить количество индивидуальных модемов в АСКУЭ (УСПД выступает в этом случае как мультиплексор), ускорить передачу данных и, кроме того, позволяет обеспечить дополнительную защиту данных учета при передаче в среду связи с КВС, преобразование различных интерфейсов и протоколов сбора данных разнотипных счетчиков (если они установлены в рамках одной и той же АСКУЭ) в единый интерфейс и протокол связи с КВС, а также, в случае УСПД-М, выполнить необходимую предобработку данных учета. В качестве УСПД можно использовать как специализированные системы учета, так и промышленные контроллеры, адаптированные под задачи энергоучета.
Обработка исходных метрологически аттестованных баз данных учета основного уровня АСКУЭ должна осуществляться в АСКУЭ субъектов специализированным программным обеспечением (СПО АСКУЭ) на автоматизированных рабочих местах (АРМ) АСКУЭ (на персональных компьютерах или рабочих станциях КВС). В том случае, если СПО АСКУЭ обрабатывает, отображает, документирует данные коммерческого учета, то оно должно быть метрологически аттестовано.
- седьмой общий принцип автоматизированного энергоучета выражает отношения между базами данных счетчиков и базой данных корпоративной компьютерной сети: "базы данных счетчиков основного уровня АСКУЭ дублируются полностью или частично в базе данных КВС соответствующего субъекта, периодически пополняются и хранятся в ней длительное время (годы)". Такой принцип позволяет повысить живучесть АСКУЭ, достоверность данных учета в длительной перспективе, а также обеспечить всесторонние краткосрочные и долгосрочные анализ и прогноз процессов энергоснабжения.
- восьмой общий принцип автоматизированного энергоучета выражает требования к программному обеспечению технических средств АСКУЭ (УСПД, КВС): "программное обеспечение технических средств АСКУЭ должно соответствовать их метрологическим характеристикам и иметь защиту от несанкционированного доступа с помощью стандартных средств защиты (пароли доступа, ключи, регистрация событий)". В частности, программное обеспечение должно реализовывать идентификацию и проверку подлинности субъектов доступа, идентификацию терминалов и каналов связи по логическим именам и/или их адресам, регистрацию загрузки и инициализации операционной системы, регистрацию запуска программ, предназначенных для обработки защищенных файлов, регистрацию попыток доступа к защищаемым файлам и другим объектам доступа (счетчики, УСПД, каналы связи), регистрацию изменений полномочий субъектов доступа, использование высокозащищенных протоколов обмена.