Смекни!
smekni.com

Методические указания по определению устойчивости энергосистем часть II (стр. 10 из 41)

В тех случаях, когда суммарные нагрузки соединяемых на параллельную работу энергосистем различаются более, чем в три раза, можно принимать, что корреляционная функция колебаний обменной мощности по связи совпадает с корреляционной функцией колебаний небаланса активной мощности меньшей из энергосистем, т.е.

(7.19)

При объединении на параллельную работу энергосистем соизмеримой мощности параметры корреляционной функции колебаний обменной мощности по связи могут быть выражены через параметры корреляционных функций колебаний небалансов мощности систем следующим образом:

, (7.20)

, (7.21)

где

, (7.22)

КсАБ - эквивалентный коэффициент крутизны статической частотной характеристики энергообъединения; А и Б - индексы передающей и приемной энергосистем.

Энергообъединение сложной структуры, когда приемная и передающая его части не являются концентрированными энергосистемами, а содержат, в свою очередь, энергосистемы со слабыми связями, приводится к энергообъединению из двух энергосистем, параметры каждой из которых определяются из выражений

, (7.23)

, (7.24)

. (7.25)

Эквивалентные параметры энергообъединения определяются по формулам (7.22)-(7.24). Во всех формулах суммируются величины, приведенные к базисной мощности [Л.14].

В случае применения автоматического регулирования обменной мощности спектр нерегулируемых колебаний небаланса между суммарной нагрузкой и генерацией содержит относительно быстрые и меньшие по величине колебания, что учитывается соответствующим выбором параметров математического фильтра, при помощи которого производится статистическая обработка экспериментальных записей нерегулярных колебаний мощности на ЦВМ (см. приложение 13). Экспериментальные исследования НИИПТ показывают, что для энергосистем мощностью 3¸20 тыс. МВт можно принимать:

= 0,2¸0,4%; Тр = 0,5¸2,5 мин; при этом зависимость
от значения суммарной нагрузки энергосистемы
удовлетворительно аппроксимируется выражением, аналогичным (7.5)

или
, МВт. (7.26)

Из рис. 7.3 видно, что значение запаса, необходимого для обеспечения

, равного одному году, при изменении Тр = Тн в пределах 0,5¸1,5 мин изменяется относительно мало и близко к 5sрег, где sрег определяется по формуле (7.26). Поэтому в ориентировочных расчетах можно принимать, что запас устойчивости этих связей на нерегулируемые колебания должен быть порядка х = 5. Вероятность отказа регулятора при этом не принимается во внимание.

7.6.7. Методика ВНИИЭ [Л.15]. Среднее время безотказной работы слабой связи оценивается средним временем между выбросами обменной мощности за относительный уровень (7.15), которое оценивается по следующей формуле

, (7.27)

где no - среднее в единицу времени (например, за час) число пересечений нерегулярными колебаниями обменной мощности уровня, равного математическому ожиданию процесса на данном интервале усреднения;

Ф (х) - гауссовское (нормальное) распределение вероятности Ф (х) » 1 при х ³ 2,5.

"Доверительные" оценки s и no определяются [Л.16] усреднением результатов, полученных на N часовых интервалах (Ти = 1 ч), относящихся к характерным областям суточных графиков нагрузки соответствующей энергосистемы или энергообъединения (10 £ N £ 25). Кроме того, определяются зависимости s и no от продолжительности интервала усреднения.

Для Ти = 0,5¸1 ч*

_______________

* По данным экспериментов, выполненных для энергосистем мощностью до 100000 МВт [Л.16, 17].

, МВт (7.28)

с = 0,40¸0,50,

no = 15¸25 1/час.

Зависимости этих характеристик от продолжительности интервала усреднения следующие: для tи от 10 до 60 мин при Ти = 60 мин

, (7.29)

. (7.30)

Зависимость среднего времени безотказной работы (7.27) от величины отстройки (7.13) показана на рис. 7.4. При no = 25 1/ч отстройкам x* = 4,5¸5 соответствует

= 1000¸10000 ч. При использовании формулы (7.28) в качестве Рн подставляется значение суммарной нагрузки меньшей из соединяемых энергосистем или группы энергосистем меньшей мощности по одну сторону от рассматриваемой межсистемной связи. Значение коэффициента с зависит от времени суток и характера графика нагрузки. Рекомендовано принимать с = 0,5 для дневных интервалов от начала утреннего подъема до окончания вечернего спада нагрузки, а для остальных часов - с=0,4. При увеличения мощности энергообъединений сверх 50000 МВт значение коэффициента с может иметь тенденцию к некоторому увеличению. Поэтому в условиях эксплуатации целесообразно уточнять этот коэффициент экспериментальным путем для конкретных условий работы.

________________

* По данным экспериментов, выполненных для энергосистем мощностью до 100000 МВт [Л.16, 17].

Рис. 7.4. Зависимость среднего времени безотказной работы в зависимости от величины отстройки, no = 20 1/ч

Указанным значениям отстройки (запаса) в размере (4,5¸5) s (МВт), где s определяется формулой (7.28), соответствует оперативная "ручная" корректировка перетока по слабым связям (в часы стабильной нагрузки), которая производится 1-2 раза в час, а в часы подъема и спада нагрузки энергосистем чаще, в соответствии с фактическим ходом изменения перетока и в зависимости от ответственности данной слабой связи в энергообъединении.

7.6.8. Как видно из сопоставления выражений (7.28) и (7.26), автоматическое регулирование межсистемного перетока снижает нерегулярные колебания обменной мощности. Это позволяет увеличить среднюю передаваемую мощность. Однако отказ по каким-либо причинам регулятора перетока приводит к восстановлению колебания обменной мощности до естественных величин и к увеличению вероятности нарушения устойчивости параллельной работы по данной связи. Выбранная с учетом вероятности отказа регулятора отстройка регулируемого перетока по [Л.16] может быть снижена с 5s до (2-3)s, где значение s определено по формуле (7.28). Такая отстройка предоставляет оперативному персоналу время, достаточное для того, чтобы после отказа регулятора вручную снизить переток и сохранить устойчивость.

Таким образом, исходя из принятых требований надежности, определяемых средней продолжительностью безотказной работы

, может быть определен расчетный запас статической устойчивости для автоматических регулируемых и регулируемых вручную слабых межсистемных связей.

7.6.9. Полученная из анализа надежности суммарная отстройка среднего перетока от предела статической устойчивости, равная примерно хS = 5s, должна быть сопоставлена с рекомендованным выше запасом статической устойчивости: 3s плюс нормативный запас 20%. Допустимая средняя (плановая) нагрузка слабой межсистемной связи определяется большим из сопоставленных запасов.

При этой необходимо учитывать, что в нормальном режиме в случаях, когда это необходимо для предотвращения ограничения потребителей или потери гидроресурсов, допускается длительная работа линии электропередачи с уменьшенным до 5¸10% запасом, в зависимости от ее роли в энергосистеме и последствий возможного нарушения устойчивости. При меньшей отстройке перетока требуется его более частая корректировка. Соответственно, в зависимости от характера использования слабой межсистемной связи, времени, в течение которого должна быть увеличена обменная мощность, и последствий возможного нарушения устойчивости, значение

также может быть снижено до нескольких месяцев.

7.6.10. Наряду с нерегулярными колебаниями обменной мощности на надежность режима работы межсистемных слабых связей могут оказывать влияние следующие факторы: внезапные отключения мощных источников энергии или нагрузки в соединяемых энергосистемах, отключения участков или параллельных цепей межсистемных линий электропередачи, понижения напряжения по концам межсистемной связи, изменения частоты энергообъединений [Л.9] и т.п. Вопросы учета вероятностей подобных эксплуатационных возмущений при управлении режимами межсистемных линий электропередачи рассматриваются в [Л.18-20]. Методика расчетов надежности с учетом основных влияющих факторов изложена в [Л.21]; эта методика может быть рекомендована пока лишь для опытного применения.