Смекни!
smekni.com

Методические указания по определению устойчивости энергосистем часть II (стр. 11 из 41)

Глава 8. САМОВОЗБУЖДЕНИЕ И САМОРАСКАЧИВАНИЕ В ЭНЕРГОСИСТЕМАХ

8.1. Общие указания

8.1.1. Под самовозбуждением следует понимать вид электромагнитной неустойчивости генераторов, при появлении которой в значительной степени или полностью теряется возможность управления установившимся режимом. При этом в отдельных точках системы самопроизвольно могут устанавливаться значения напряжений, опасные для изоляции оборудования. Нарастание тока и напряжения в процессе самовозбуждения может быть либо апериодическим (синхронное самовозбуждение), либо колебательным (асинхронное самовозбуждение). Частота тока и напряжения при самовозбуждении соответствует частоте собственных колебаний в электрическом контуре, образованном внешней сетью с входным емкостным сопротивлением, и электрической машиной. Амплитуда собственных колебаний ограничивается насыщением стали машин и трансформаторов.

Асинхронное самовозбуждение является наиболее опасным для электрических систем вследствие того, что колебания тока и напряжения нарастают до максимального значения в течение нескольких периодов, а существующие автоматические регуляторы возбуждения не в состоянии подавить этот быстроразвивающийся процесс.

8.1.2. Точное определение условий, при которых возможно появление самовозбуждения, следует выполнять анализом системы линейных неоднородных дифференциальных уравнений для вращающейся машины и внешней сети, содержащей емкость. Для нахождения соотношений параметров машины и внешней сети, при которых возможно появление самовозбуждения, а также мероприятий, устраняющих это явление, насыщение может не учитываться [Л.22-30].

8.1.3. Под самораскачиванием следует понимать вид электромеханической периодической неустойчивости энергосистемы, при которой ротор синхронной машины совершает самопроизвольные колебания, заканчивающиеся либо выпадением машины из синхронизма, либо установлением какого-то предельного цикла колебаний, препятствующих нормальной работе энергосистемы. Самораскачивание - явление редкое в практике работы энергосистем и может появиться у небольших слабо загруженных синхронных и асинхронных машин, работающих на сеть со значительным активным сопротивлением, когда отрицательный демпферный момент может быть существенным.

Применение продольной емкостной компенсации на дальних линиях электропередачи, установка компенсированных емкостью синхронных компенсаторов, сооружение электропередач, настроенных на полуволну, повышает вероятность возникновения самораскачивания.

8.1.4. Аналитическое исследование самораскачивания может быть достаточно полно проведено с помощью уравнений Парка-Горева, записанных для малых колебаний энергосистемы в любом заданном нагрузочном режиме.

При принятых условиях энергосистему можно считать линейной и использовать для анализа линеаризованные уравнения Парка-Горева в приращениях значений тока, потокосцепления, угла и т.д.

8.1.5. Самораскачивание и самовозбуждение могут проявляться совместно. Тем не менее, проверку энергосистемы на отсутствие самовозбуждения и самораскачивания проводят раздельно, так как при реальных постоянных инерции роторов машин начало развития самовозбуждения происходит практически при неизменной частоте вращения ротора.

8.2. Самовозбуждение в простейшей энергосистеме

8.2.1. В процессе проектирования и эксплуатации энергосистем следует определять соотношения параметров цепи машина - емкостная нагрузка1, при которых возникает самовозбуждение.

Рис. 8.1. Схема замещения к расчету самовозбуждения

8.2.2. Во многих случаях схему рассматриваемой части энергосистемы можно приводить к виду, показанному на рис. 8.1; в этой схеме синхронная машина работает на шины неизменного напряжения (в частном случае U = 0) через емкостное сопротивление хс, внешние индуктивное

и активное сопротивление r.

_____________

1 Емкостной нагрузкой может быть, например линия электропередачи, включенная односторонне на один или несколько генераторов станции.

* Индуктивное сопротивление хвн, если иное специально не оговорено, вводится в сопротивление машины xd, xq,

и т.д.

8.2.3. Возможность возникновения самовозбуждения (необходимое условие) определяется наличием правых корней в характеристическом уравнении [Л.1].

a0pn + a1pn-1 + … + an-1p + an = 0, (8.1)

что имеет место, согласно критерию Гурвица, при соблюдении неравенств:

(8.2)

где Dn-1 - предпоследний определитель Гурвица, составленный из коэффициентов (8.1).

Процесс самовозбуждения будет развиваться (достаточное условие), если точка, координаты которой характеризуются параметрами внешней сети хс и r, располагается внутри одной из зон самовозбуждения (рис. 8.2). При этом границы зон самовозбуждения [Л.22, 31] следует определять из условий:

an = 0 (8.3)

для зоны I синхронного самовозбуждения и

Dn-1 = 0 (8.4)

для зон II, III асинхронного самовозбуждения.

Рис. 8.2. Зоны самовозбуждения явнополюсной синхронной машины

8.2.4. Возможность возникновения синхронного самовозбуждения, при котором частота свободных колебаний в цепи статора равна синхронной частоте, следует учитывать как при замкнутой, так и при разомкнутой обмотке возбуждения.

8.2.5. Зона I синхронного самовозбуждения в координатах r и x ограничена половиной окружности, центр которой расположен на оси xс и сдвинут на (xd + xq) / 2 относительно начала координат. Указанная полуокружность (рис. 8.2) пересекает ось ординат в точках xc1 = xd и xc2=xq, т.е. при r = 0 зона синхронного самовозбуждения определяется значениями емкостного сопротивления внешней сети согласно неравенству

xq < xc < xd. (8.5)

Радиус окружности, которая получается по условию (8.3), определяет максимальное значение активного сопротивления, при котором возможно появление синхронного самовозбуждения:

. (8.6)

При наличии в системе активного сопротивления r > rмакс синхронное самовозбуждение невозможно.

8.2.6. Возможность возникновения асинхронного самовозбуждения в зонах II* и III, где частота вращения ротора не равна частоте колебаний в контурах статора, следует учитывать лишь при замкнутой обмотке возбуждения при изменении емкостного сопротивления внешней сети от 0 до xq (см. рис. 8.2).

______________

* Строго говоря, внутри зоны II можно выделить еще одну область, которую определяют иногда как область репульсионно-синхронного самовозбуждения. На границе этой области комплексные корни обращаются в два действительных кратных корня. Такое разделение зоны асинхронного самовозбуждения II на две области может способствовать уточнению характера процесса, но не имеет практического значения вследствие того, что репульсионно-синхронное самовозбуждение ни по визуальному наблюдению по приборам, ни по виду осциллограмм почти нельзя отличить от асинхронного. Кроме того, процесс самовозбуждения во всей зоне II не может быть устранен существующими в настоящее время АРВ синхронных машин. Способы выделения области репульсионно-синхронного самовозбуждения изложены в [Л.22].

8.2.7. Построение областей самовозбуждения II и III можно проводить, используя метод D-разбиения или пользуясь критерием Раусса.

8.2.8. При проектировании и в эксплуатационных расчетах границу асинхронного самовозбуждения допустимо определять приближенно только по зоне II. Для реально существующих постоянных времени обмотки возбуждения

³ 4 с, можно принять, что зона асинхронного самовозбуждения II также ограничивается половиной окружности, радиус которой равен (xq -
) / 2. Центр окружности расположен на оси xc на расстоянии (xq +
) / 2 от начала координат. Максимальное значение активного сопротивления зоны II в этом случае равно

. (8.7)

Приближенной зоне асинхронного самовозбуждения II при незначительном сопротивлении r соответствует неравенство

< xc < xq (см. пример 1 в приложении 14).

8.2.9. При малых значениях постоянной времени обмотки возбуждения машины (

£ 1 с), области асинхронного самовозбуждения II и III искажаются и должны находиться по критерию (8.4).