- расчет может определить лишь достаточные (но не необходимые) условия устойчивости при дальнейшем переходном процессе без дополнительных конкретных возмущений. Поэтому в большинстве случаев остается необходимым рассчитать также статическую устойчивость для самоустанавливающегося послеаварийного режима. Этот расчет следует проводить для математической модели, значительно более приближающейся к реальным условиям послеаварийного режима (обычно утяжеленного), чем модель, используемая в расчете по прямому методу Ляпунова. Это важно не только для проверки устойчивости послеаварийного режима энергосистемы, но и для оценки запаса статической устойчивости этого режима;
- если самоустанавливающийся послеаварийный режим может быть реализован лишь кратковременно, то необходимо рассчитать длительно допустимый (при возникших условиях) режим, в которой может быть переведена энергосистема.
В алгоритмах эталонных программ расчета динамической устойчивости, в зависимости от их назначения, желательно предусматривать (помимо того, что учитывается в серийных программах) хотя бы для нескольких синхронных машин учет полных уравнений Парка-Горева, учет влияния магнитного насыщения, уточненный учет автоматического регулирования возбуждения и скорости машин, уточненный учет действия устройств противоаварийной автоматики. Желательно также использование достаточно точного метода численного интегрирования (желательно с оценкой накопляющейся погрешности), учет волновых процессов в длинных линиях электропередачи, возможность учета случайных вариаций исходных данных и автоматической статистической обработки серии расчетов по методу статистических испытаний.
9.4.3. При проведении расчетов динамической устойчивости по серийным программам рекомендуется определять исходный доаварийный режим в соответствии с приведенными выше указаниями (п.9.2). В программах целесообразно предусматривать проверку сбалансированности введенного в расчет исходного режима (возможны как ошибки в задании исходных данных, так и ошибки при вводе информации в ЦВМ). Такая проверка может состоять в том, что по программе расчета динамической устойчивости рассчитываются сначала несколько интервалов времени при отсутствии заданного возмущения. Это позволяет убедиться в том, что результаты расчета этих интервалов совпадают с данными исходного доаварийного режима. В программе должна быть предусмотрена печать фактически введенных в ЦВМ исходных данных.
9.4.4. В программах следует предусматривать возможность учета уравнений асинхронных двигателей (см. гл. 6), а также статические характеристики нагрузки, как обобщенные (см. гл. 2), так и с конкретно задаваемыми коэффициентами описывающих их полиномов.
9.4.5. Рекомендуется при отсутствии других возможностей оценивать точность численного интегрирования путем уменьшения шага интегрирования. Такую оценку желательно производить в начале расчета и в той его части, когда контролируемые параметры переходного процесса изменяются с наибольшей скоростью (если в программе расчета на ЦВМ не предусмотрено автоматическое изменение шага интегрирования).
9.4.6. В зависимости от назначения расчетов целесообразно осуществлять печать и отображение на ЭЛТ графиков (для оперативной оценки хода и результатов расчетов) и печать таблиц в конце расчета (для более подробной и окончательной оценки результатов расчета).
9.4.7. Рекомендуется проводить серии расчетов при обоснованном выборе необходимых вариантов по исходному режиму, возмущению, параметрам устройств противоаварийной автоматики и др.
9.4.8. При расчете на ЦВМ длительных электромеханических переходных процессов, в особенности включающих в себя асинхронный ход и его ликвидацию (расчет результирующей устойчивости), рекомендуется следующее: использование для эквивалентных машин, частота вращения которых в переходном процессе может измениться наиболее значительно, уравнений Парка-Горева, уточненной математической модели АРС, учет асинхронных (и при необходимости синхронных) двигателей в тех узлах сети, в которых может быть значительное изменение напряжения, определение в ходе расчета режимных параметров, от которых зависит действие соответствующих релейных защит и устройств противоаварийной автоматики; применение сравнительно более точного метода численного интегрирования, желательно с оценкой накопляющейся погрешности.
9.4.9. Пои определении токов и напряжений в различных звеньях энергосистемы в заданные моменты времени электромеханического переходного процесса следует иметь в виду, что в несимметричных режимах (например, до отключения несимметричного КЗ во всех фазах или при неполнофазных режимах) по используемым в настоящее время программам расчета на ЦВМ определяются токи и напряжения прямой последовательности фаз. Для ЦВМ третьего поколения программы могут быть модифицированы для расчета токов и напряжений других последовательностей.
Определение эквивалентного шунта в схеме замещения энергосистемы при несимметричном КЗ может производиться по программе расчета схем замещения нулевой и обратной последовательности или по программе, в которой задается снижение напряжения прямой последовательности в точке КЗ (и мощность, потребляемая шунтом). Второй вариант программы целесообразен в случае отсутствия достоверных данных о параметрах схем нулевой и обратной последовательности.
Характеристику программ для расчетов динамической устойчивости энергосистем см. в приложении 16.
9.5. Применение метода статистических испытаний для анализа влияния случайных погрешностей исходной информации и реализации результатов расчета устойчивости на ЦВМ
9.5.1. Анализ устойчивости энергосистем должен проводиться с учетом случайных отклонений (погрешности) исходных данных, принятых для расчета, от фактических значений. Необходимо учитывать также, что при реализации результатов расчета неизбежны случайные отклонения фактических значений параметров режима энергосистемы от значений, фиксируемых с помощью измерительных устройств. Эти отклонения вызываются погрешностью измерений (погрешности измерительной и преобразовательной аппаратуры -трансформаторов тока и напряжения, каналов телепередачи и т.п.). Влияние этих случайных погрешностей в многочисленных звеньях энергосистемы должно определяться с учетом вероятности как взаимной компенсации, так и взаимного усиления, так как отклонения могут иметь разные знаки. Для решения этой задачи целесообразно применять метод статистических испытаний [Л.65-68] , который при использовании ЦВМ является практически выполнимым. В соответствии с этим методом на ЦВМ многократно повторяется расчет по детерминистически построенной основной подпрограмме анализа устойчивости, но для каждого расчета по дополнительным подпрограммам производится вариация случайными числами вводимых исходных данных. Эта вариация производится в пределах, заданных для каждого параметра или для групп параметров, при заданных законах распределения вероятности. Результаты многократно повторяемых детерминистических расчетов обрабатываются специальной подпрограммой по методам математической статистики, при этом выполняется минимально необходимое для представительности статистики количество повторяемых расчетов. Таким образом, осуществляется статистическое моделирование на ЦВМ необходимого числа "испытаний" при случайной вариации различных параметров*.
________________
* Случайные числа, необходимые при решении задачи, целесообразно вырабатывать с помощью специальных подпрограмм на ЦВМ.
Для различных ЦВМ имеется большая библиотека подпрограмм датчиков псевдослучайных чисел (ПДСЧ) с различными законами распределения (равномерный, нормальный, биномиальный и т.д.). В связи с многомерностью задач анализа устойчивости энергосистем и ограниченной поэтому возможностью проведения большого числа испытаний на ЦВМ, к ПДСЧ предъявляются повышенные требования. Кроме проверки их по стандартным тестам, желательно проверять с заданной доверительной вероятностью предельные отклонения статистических характеристик выборок из ПДСЧ по числу варьируемых исходных параметров, а также оценивать независимость этих выборок. [Л.67].
9.5.2. Диапазон отклонений значений, принимаемых для расчета, от возможных фактических параметров, а также законы распределения отклонений следует определять предварительным анализом статистических данных, если они имеются. При отсутствии статистики (во многих случаях имеется еще недостаточное количество данных) необходимо принимать во внимание особенности отклонений параметров различного типа. Погрешности измерений сложными измерительными устройствами подчиняются, как правило, нормальному закону. Параметры элементов энергосистем, используемые в расчетах устойчивости, большей частью не измеряются непосредственно, а вычисляются с помощью исходных величин, определяемых экспериментально. В этом случае диапазон отклонений и закон распределения отклонений параметров зависят от количества исходных величин, по которым они определяются, от вида функциональной связи между ними, от ошибок исходных величин. При полном отсутствии экспериментальных данных по каким-либо параметрам (прогнозируемая нагрузка, проектные длины линий) диапазон отклонений следует задавать ориентировочно на основании соображений о возможных отклонениях таких параметров. Распределение отклонений для подобных параметров можно принимать равномерным.