Следует учитывать, что степень влияния погрешностей исходных параметров на результат расчета устойчивости неодинакова.
Все исходные для расчета параметры можно разделить на "существенные" - изменение которых в заданных границах существенно сказывается на результаты расчета, и "несущественные" - изменение которых в меньшей (заданной) степени, по сравнению с первыми, влияет на результат. "Несущественные" параметры можно задавать в расчетах фиксированными. К точности определения "несущественных" параметров можно не предъявлять высоких требований.
9.5.3. Количество возможных комбинаций отклонений параметров может быть очень велико. Чтобы уменьшить число вариаций (имитирующих случайные отклонения) исходных параметров, а значит, и затраты машинного времени, следует определять минимально необходимое число испытаний (реализаций), при котором получаются достоверные результаты анализа с необходимой точностью.
9.5.4. Получаемая посредством многократных расчетов устойчивости энергосистемы совокупность случайных значений результата расчетов должна быть подвергнута статистической обработке, в результате которой может быть получен ее закон распределения (в графическом или аналитическом виде) и числовые характеристики с оценкой их относительной погрешности: среднее значение, дисперсия, коэффициент вариации, вероятность нарушения устойчивости и др. [Л.65-68].
При оценке влияния погрешности исходной информации в расчетах устойчивости необходимо задавать погрешность исходных данных, начиная с расчета доаварийного режима, поскольку его параметры оказывают существенное влияние на результаты анализа устойчивости.
9.5.5. Расчеты устойчивости энергосистем при учете погрешности исходной информации следует выполнять на ЦВМ с помощью комплексов программ, включающих основные серийные или эталонные программы расчета установившегося электрического режима, динамической или статической устойчивости, блоки вариации исходных данных и статистической обработки результатов счета. Основные программы модифицируются для сокращения объема печати при многократных расчетах и для осуществления связи с программой статистической вариации.
При вероятностной оценке влияния погрешности исходных данных нет необходимости получать в каждом расчете такую же полную информацию об устойчивости режима, как в детерминистическом расчете. Например, при анализе динамической устойчивости с учетом неточности исходных данных не нужно полностью выводить на печать все кривые изменения относительных углов роторов синхронных машин, а достаточно в поставленной задаче определить лишь, например максимальные или минимальные значения относительных углов; в расчетах статической устойчивости не нужно находить границы областей устойчивости, а лишь ее размеры. Полная информация о результатах расчета устойчивости при необходимости получается после оценки влияния погрешности исходных данных путем использования немодифицированной основной программы.
9.5.6. Сопоставление результатов расчетов между собой (например, при сравнении более точного и упрощенных методов), а также с данными опытов следует связывать оценками типа "разница находится (или не находится) в пределах точности исходных расчетных данных и точности измерения".
Эта оценка до последнего времени делалась весьма ориентировочно и большей частью основывалась лишь на инженерной интуиции. Метод статистических испытаний на ЦВМ дает возможность получить расчетно-аналитическое обоснование этой оценки при учете влияния неточности исходной информации на результаты расчета устойчивости энергосистем и неточности измерений при реализации результатов этих расчетов. При выборе метода анализа устойчивости энергосистем слезет также иметь в виду и чувствительность методов к вариации параметров расчета. Эта чувствительность может оказаться разной для различных методов и алгоритмов, несмотря на то, что они полностью эквивалентны при однозначном представлении исходных данных. Применение метода статистического моделирования на ЦВМ дает возможность исследовать чувствительность различных методов (алгоритмов) анализа устойчивости энергосистем в статистическом плане, без детального изучения внутренней структуры метода.
Указанные расчеты в основном должны иметь характер типовых, чтобы не было необходимости выполнять их в полном объеме для каждого конкретного случая.
Пример расчета динамической устойчивости на ЦВМ с учетом влияния случайной погрешности исходной информации приведен в приложении 17.
9.5.7. Обоснование нормативных показателей устойчивости энергосистем должно производиться с помощью статистико-вероятностных методов анализа, поскольку число, вид, место и длительность нарушения устойчивости в энергосистеме, а также погрешность реализации результатов расчетов являются случайными величинами. При определении нормативных показателей с помощью вероятностных характеристик, полученных в результате вероятностного анализа устойчивости, необходимо учитывать случайную погрешность исходных данных как в анализе устойчивости, так и в технико-экономических расчетах, в которые наряду с капиталовложениями и эксплуатационными расходами войдет и народнохозяйственный ущерб от перерывов электроснабжения.
Глава 10. ПРОВЕДЕНИЕ НАТУРНЫХ ИСПЫТАНИЙ И ИХ ИСПОЛЬЗОВАНИЕ ДЛЯ АНАЛИЗА УСТОЙЧИВОСТИ ЭНЕРГОСИСТЕМ
10.1. Общие указания
10.1.1. Натурные испытания проводятся с целью уточнения областей устойчивости*, выбора настройки устройств регулирования и противоаварийной автоматики, оценки устойчивости нагрузки, изучения сложных переходных процессов, определения эффективности различных противоаварийных мероприятий, уточнения математического описания энергосистемы и определения параметров ее элементов [Л.75-77].
_______________
* Необходимость возможно точного определения устойчивости в условиях эксплуатации связана также с тем, что в ряде случаев для предотвращения ограничения потребителей или потери гидроресурсов в соответствии с нормативами [Л.7] допускается длительная работа линии электропередачи с запасом по статической устойчивости, уменьшенным до 5-10% (в зависимости от роли линии электропередачи в энергосистеме и последствий возможного нарушения устойчивости). Работа с такими малыми запасами устойчивости осуществима только при условии детального анализа условий работы линии электропередачи и проведения экспериментов, необходимых для выявления фактических пределов устойчивости.
10.1.2. Как правило, выбор оптимальной по условиям обеспечения устойчивости настройки автоматических устройств (сильного регулирования возбуждения, противоаварийной автоматики, устройств аварийной разгрузки линии электропередачи и т.д.) следует осуществлять с помощью специальных натурных испытаний.
10.1.3. Проведение натурных экспериментов представляет собой сложную задачу, связанную с большой подготовкой организационного характера, установкой необходимой регулирующей аппаратуры, средств измерения и регистрации параметров режима и созданием необходимых схем и режимов; во многих случаях опыты сопровождаются серьезным нарушением режима работы энергосистемы (объединения). Количество опытов поэтому следует жестко ограничивать. Для определения устойчивости при большом разнообразии эксплуатационных схем и режимов необходимо сочетать натурные испытания с расчетами или исследованиями на моделях. При этом натурные испытания следует использовать не только для непосредственных выводов из наблюдаемых процессов, но и для уточнения расчетной методики и выявления параметров, необходимых для моделирования энергосистемы, что позволяет получать достоверные результаты для других схем и режимов, в частности, для режимов, которые не могут быть воспроизведены в натуре.
10.1.4. Испытания не должны исключать расчетов по определению пределов устойчивости, а должны использоваться для уточнения этих пределов. Как правило, испытаниям должно предшествовать расчетное определение устойчивости.
10.2. Экспериментальное определение пределов статической устойчивости
10.2.1. Испытания статической устойчивости в условиях эксплуатации чаще всего проводятся с целью определения предельных значений мощностей, передаваемых по линиям электропередачи. Помимо этого, такие испытания проводятся для проверки устойчивости заданного режима, определения уровней напряжения в различных точках энергосистемы, выбора коэффициентов настройки регуляторов возбуждения сильного действия и т.д. Экспериментальное определение предельной по статической устойчивости загрузки линий электропередачи (Рпред) следует проводить в особенности в относительно сложных энергосистемах, когда расчет предела по статической устойчивости наталкивается на серьезные трудности, так как требуется учет большого числа факторов.
10.2.2. Следует также уточнять значения Рпред для межсистемных слабых связей, предельная пропускная способность которых соизмерима с величиной нерегулярных колебаний мощности. Отсутствие данных по действительному значению Рпред при этих условиях может привести к работе с неоправданно большим запасом, или напротив, к частым нарушениям устойчивости вследствие недостаточного запаса по статической устойчивости. Кроме того значение Рпред необходимо для правильного выбора уставок реле и устройств противоаварийной автоматики, предназначенной для предотвращения нарушения устойчивости.
10.2.3. Методика проведения испытаний. Экспериментальное определение Рпред может быть выполнено следующими двумя способами:
- путем постепенного увеличения передачи мощности по линии электропередачи до предела по статической устойчивости;
- путем создания качаний по испытуемой линии электропередачи, при которых передаваемая мощность проходит максимальные значения.