6.3. Прогнозирование ресурса аппаратов по изменению механических характеристик металла
В процессе эксплуатации оборудования в ряде случаев происходит снижение механических свойств материала отдельных элементов сосудов и аппаратов (
, , Zt, At, KCU).Такое снижение механических свойств может быть определено путем испытания образцов, изготовленных из контрольных вырезок, либо путем замера твердости металла и определения механических характеристик по существующим корреляционным зависимостям.
В случае если снижение механических свойств оказалось менее 5 % нормативных, то все расчеты отбраковочных размеров либо допускаемого количества циклов проводят по фактическим механическим свойствам материала.
Если снижение механических свойств оказалось более 5 % нормативных, то определяют скорость снижения механических свойств аналогично определению скорости коррозии в подп. 6.1.2.2 настоящих Методических указаний и путем экстраполяции определяют механические свойства материала к концу ожидаемого остаточного периода эксплуатации. Отбраковочные размеры конструктивных элементов или остаточный ресурс определяются по этим механическим характеристикам.
6.4. Прогнозирование ресурса сосуда, работающего в условиях ползучести материала
6.4.1. Остаточный ресурс с учетом ползучести материалов (длительной прочности) определяется для сосудов, работающих при повышенных температурах, когда в расчетах на прочность допускаемое напряжение определяется по пределу длительной прочности или 1 % предела ползучести для заданного срока эксплуатации (105 ч). Если нет таких данных, то температура, когда учитывается ползучесть, принимается равной и выше 380 °С для углеродистых сталей, 420 °С — для низколегированных сталей, 525 °С — для аустенитных сталей.
6.4.2. Остаточный ресурс сосудов, работающих при непрерывном режиме нагружения, определяется по формуле
,где Sф — фактическая минимальная толщина стенки элемента, мм;
Sp — расчетная толщина стенки элемента, определенная по допускаемым напряжениям, учитывающим предел длительной прочности материала элемента (1 % предела ползучести) для планируемого срока службы, мм;
а — скорость равномерной коррозии (эрозионного изнашивания), мм/год.
Скорость равномерной коррозии (эрозии) а определяется в соответствии с подразд. 6.1 настоящих Методических указаний.
Предел длительной прочности (1 % предел ползучести) или допускаемое напряжение для планируемого срока службы определяется по нормативной документации (например, по ГОСТ 14249—89, ОСТ 108.031.08-85, ПНАЭ Г-7-002-86). Если в указанных НД нет таких данных, то предел длительной прочности для планируемого остаточного срока эксплуатации может быть определен в соответствии с рекомендациями подразд. 7.9 настоящих Методических указаний.
6.4.3. Если имеется какой-либо установленный фактический размер Lф(t) диаметра сосуда или другого фиксированного размера в кольцевом направлении в местах с наиболее высокой температурой и при очередном диагностировании (не более 4 лет) выявлена остаточная деформация ползучести, то ресурс сосуда может быть определен по следующей зависимости:
,где ап — скорость установившейся ползучести, %/год.
Остаточный ресурс сосуда в этом случае определяется по формуле
,где Тэ — продолжительность эксплуатации от начала до последнего обследования.
Скорость установившейся ползучести определяется по формуле:
,где Lф(t1), Lф(t2) — фактический размер диаметра сосуда или другого фиксированного линейного размера в кольцевом направлении при первом и втором обследованиях соответственно, мм;
Dt — время между первым и вторым обследованиями, лет;
К1 — коэффициент, учитывающий отличие средней ожидаемой скорости ползучести от гарантированной скорости ползучести с доверительной вероятностью g = 0,7—0,95;
К2 — коэффициент, учитывающий погрешность определения скорости ползучести по линейному закону, от скорости ползучести, рассчитанной по более точным нелинейным законам изменения контролируемого параметра.
Значения коэффициентов К1 и К2 следует принимать в пределах: К1 = 0,5—0,75; К2 = 0,75—1,0. При этом большие значения К1, К2 принимаются при незначительной скорости ползучести (меньше 0,05 % в год) и при общей остаточной деформации меньше 0,5 %; меньшие значения К1, К2 принимаются при значительной скорости ползучести (более 0,05 % в год) и при общей остаточной деформации, превышающей 0,5 %.
6.4.4. Если после проведения очередного диагностирования имеются три значения контролируемого параметра Lф(t1), Lф(t2), Lф(t3) полученные в моменты времени t1, t2, t3, то для определения скорости ползучести ап проводятся следующие вычисления. Вычисляются величины:
; ; ; .После этого скорость ползучести определяется по формуле
.6.4.5. Если число измерений N контролируемого параметра Lф(ti) больше или равно четырем (N ³ 4), то расчет остаточного ресурса проводится в соответствии с нормативно-технической документацией [16].
6.4.6. Прогнозирование остаточного ресурса при циклических нагрузках в условиях ползучести проводится, если аппарат работает при температурах, вызывающих ползучесть, и при этом нагружается повторными тепловыми или механическими усилиями. В этом случае элементы аппарата должны быть рассчитаны на длительную циклическую прочность.
Расчеты на длительную циклическую прочность проводятся по нормам ПНАЭГ-7-002-86 с помощью тех же формул, что и расчеты на циклическую прочность при температурах, не вызывающих ползучести. При этом в формулах вместо кратковременных механических характеристик материала используются механические характеристики, полученные при испытаниях на длительную статическую прочность (
, Zt, At). — предел длительной прочности при максимальной температуре цикла нагружения за время t.Zt — равномерное сужение поперечного сечения при длительном статическом разрушении;
At — относительное удлинение образца при длительном статическом разрушении.
Остаточный ресурс определяется в соответствии с рекомендациями подразд. 6.2.
6.5. Прогнозирование ресурса сосудов по критерию хрупкого разрушения
6.5.1. Определение остаточного ресурса по критерию хрупкого разрушения (трещиностойкости) проводится в следующих случаях.
1. Минимальная температура стенки сосуда при рабочих режимах эксплуатации или при гидроиспытании может быть меньше минимальной температуры, предусмотренной для применения стали в Правилах устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 10-115—96).
2. Сталь или сварные соединения при рабочих режимах эксплуатации или испытаний имеет ударную вязкость ниже значений, предусмотренных табл. 8 Правил устройства и безопасной эксплуатации сосудов, работающих под давлением (ПБ 10-115—96), например, в результате наводораживания сталей.
3. При проведении дефектоскопии сосуда обнаружены дефекты, выходящие за пределы норм, установленных Правилами проектирования, изготовления и приемки сосудов и аппаратов стальных сварных (ПБ 03-384-00) и ОСТ 24.201.03-90 «Сосуды и аппараты стальные высокого давления. Общие технические требования». При этом проведение ремонта дефектных мест связано с большими техническими трудностями.
4. При проведении дефектоскопии выявлены отдельные трещины, которые после выборки были заварены и места ремонта проконтролированы на отсутствие дефектов.
6.5.2. Условие сопротивления хрупкому разрушению проверяется выполнением следующего соотношения:
,где К1 — коэффициент интенсивности напряжений;
[К1] — допускаемый коэффициент интенсивности напряжений.
Коэффициент интенсивности напряжений определяется в соответствии с нормами, изложенными в ПНАЭ Г-7-002—86.
Для первого случая п. 6.5.1 (при отсутствии информации о дефекте) при определении К1 принимается условная поверхностная трещина глубиной а = 0,25S и полудлиной С = 1,5а.
Для первого случая при оценке хрупкой прочности можно провести расчет по критерию «течь перед разрушением».