Функциональные возможности ЖК-мониторов с активной матрицей почти такие же, как у дисплеев с пассивной матрицей. Разница заключается в матрице электродов, которая управляет ячейками жидких кристаллов дисплея. В случае с пассивной матрицей разные электроды получают электрический заряд циклическим методом при построчной регенерации дисплея, а в результате разряда емкостей элементов изображение исчезает, так как кристаллы возвращаются к своей изначальной конфигурации. В случае с активной матрицей к каждому электроду добавлен запоминающий транзистор, который может хранить цифровую информацию (двоичные значения 0 или 1), и в результате изображение сохраняется до тех пор, пока не поступит другой сигнал. Такой транзистор, выполняя роль своеобразного коммутирующего ключа, позволяет коммутировать более высокое (до десятков вольт) напряжение, используя сигнал низкого уровня (около 0,7 В). Благодаря применению активных ЖК-ячеек стало возможным значительно снизить уровень сигнала управления и тем самым решить проблему частичной засветки соседних ячеек.
Запоминающие транзисторы производятся из прозрачных материалов, что позволяет световому лучу проходить сквозь них, и располагаются на тыльной части дисплея, на стеклянной панели, которая содержит жидкие кристаллы. Поскольку запоминающие транзисторы выполняются по тонкопленочной технологии, подобные ЖК-мониторы получили название TFT-мониторы (Thin Film Transistor — тонкопленочный транзистор). Тонкопленочный транзистор имеет толщину в диапазоне от 0,1 до 0,01 мкм. Технология TFT была разработана специалистами фирмы Toshiba. Она позволила не только значительно улучшить показатели ЖК-мониторов (яркость, контрастность, угол зрения), но и создать на основе активной ЖК-матрицы цветной монитор.
К основным характеристикам жидкокристаллических мониторов относятся следующие.
Размер экрана ЖК-мониторов находится в пределах от 13 до 16". В отличие от ЭЛТ-мониторов, номинальный размер экрана и размер его видимой области (растра) практически совпадают.
Ориентация экрана у ЖК-монитора в отличие от ЭЛТ-монитора может быть как портретная, так и ландшафтная. В то время как традиционные экраны ЭЛТ-мониторов и ЖК-экраны компьюте- ров типа Notebook имеют только ландшафтную ориентацию, обусловленную тем, что поле зрения человека в горизонтальном направлении шире, чем в вертикальном, в ряде случаев (работа с текстами большого объема, Web-страницами) намного удобнее работать с экраном портретной ориентации. ЖК-монитор можно легко развернуть на 90°, при этом ориентация изображения останется прежней.
Поле обзора ЖК-мониторов обычно характеризуется углами обзор а, отсчитываемыми от перпендикуляра к плоскости экрана по горизонтали и вертикали.
Разрешение ЖК-монитора определяется размером отдельной ЖК-ячейки, т.е. фиксированным размером пикселов.
Метод «Centering» (центрирование) состоит в том, что для отображения изображения используется только то количество пикселов, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине: все неиспользуемые пикселы остаются черными, образуя вокруг изображения широкую черную рамку.
Метод «Expansion» (растяжение) основан на растяжении изображения на весь экран, что приводит к возникновению некоторых искажений и ухудшению резкости.
Яркость — важнейший параметр при выборе ЖК-монитора. Типовая яркость ЖК-монитора 150 — 200 кд/м2. При этом в центре яркость ЖК-монитора может быть на 25 % выше, чем у краев экрана.
Контрастность изображения ЖК-монитора показывает, во сколько раз его яркость изменяется при изменении уровня видеосигнала от минимального до максимального. Приемлемая цветопередача обеспечивается при контрастности не менее 130:1, а высококачественная — при 350:1.
Инерционность ЖК-монитора характеризуется минимальным временем, необходимым для активизации его ячейки, и составляет 30 — 70 мс, соответствуя аналогичным параметрам ЭЛТ-мо-ниторов.
Палитра ЖК-мониторов, по сравнению с обычными, ограничена определенным количеством воспроизводимых на экране оттенков цветов. Типовой размер палитры современных ЖК-мониторов составляет 262 144 или 16 777 216 оттенков цветов.
Массогабаритные характеристики и энергопотребление выгодно отличают ЖК-мониторы от ЭЛТ-мониторов. Масса большинства моделей не превышает нескольких килограмм, а толщина экрана — 20 мм. Потребляемая мощность в рабочем режиме не превышает 35-40 Вт.
Плазменные дисплеи (Plasma Display Panel — PDF) создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например аргоном или неоном. Затем на стеклянную поверхность наносят миниатюрные прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом человеком.
Электролюминесцентные мониторы (Electric Luminiescent Displays — ELD) no своей конструкции аналогичны ЖК-мониторам. Принцип действия электролюминесцентных мониторов основан на явлении испускании света при возникновении туннельного эффекта в полупроводниковом p-n- переходе. Такие мониторы имеют высокие частоты развертки и яркость свечения, кроме того, они надежны в работе. Однако они уступают ЖК-мониторам по энергопотреблению, поскольку на ячейки подается относительно высокое напряжение — около 100 В. При ярком освещении цвета электролюминесцентных мониторов тускнеют.
Мониторы электростатической эмиссии (Field Emission Displays — FED) являются сочетанием традиционной технологии, основанной на использовании ЭЛТ, и жидкокристаллической технологии. Мониторы FED основаны на процессе, который несколько похож на тот, что применяется в ЭЛТ-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. В качестве пикселов применяются такие же зерна люминофора, как и в ЭЛТ-мониторе, что позволяет получить чистые и сочные цвета, свойственные обычным мониторам. Однако активизация этих зерен производится не электронным лучом, а электронными ключами, подобными тем, что используются в ЖК-мониторах, построенных по TFT-технологии. Управление этими ключами осуществляется специальной схемой, принцип действия которой аналогичен принципу действия контроллера ЖК-монитора.
Органические светодиодные мониторы (Organic Light-Emitting Diode Displays — OLEDs), или LEP-мониторы {Light Emission Plastics — светоизлучающий пластик), по своей технологии похожи на ЖК-и ELD-мониторы, но отличаются материалом, из которого изготавливается экран: в LEP-мониторах используется специальный органический полимер (пластик), обладающий свойством полупроводимости. При пропускании электрического тока такой материал начинает светиться.
Основные преимущества технологии LEP по сравнению с рассмотренными:
· низкое энергопотребление (подводимое к пикселу напряжение менее 3 В);
· простота конструкции и технологии изготовления;
· тонкий (около 2 мм) экран;
· малая инерционность (менее 1 мкс).
К существенным недостаткам этой технологии следует отнести малую яркость свечения экрана; малый размер экрана. LEP-мониторы используются пока только в портативных устройствах, например, в сотовых телефонах.
Выбор той или иной модели монитора зависит от характера информации, с которой будет работать пользователь, и задач, которые он ставит перед собой, а также от суммы выделенных средств на приобретение монитора. Российский рынок мониторов Постоянно пополняется новыми моделями. Если модель уже выбрана, при выборе конкретного экземпляра полезно следовать Приведенным ниже рекомендациям.
Вопросы для самоконтроля:
1. Принцип работы жидкокристаллических мониторов;
2. Основные характеристики жидкокристаллических мониторов;
3. Подключение мониторов на основе ЖК;
4. Установка режимов работы жидкокристаллических мониторов;
5. Принцип работы плазменных дисплеев;
6. Принцип работы электролюминесцентных мониторов;
7. Принцип работы мониторов электростатической эмиссии;
8. Принцип работы органических светодиодных мониторов.
Тема 5.3 Проекционные аппараты
Студент должен:
иметь представление:
· об устройствах отображения информации
знать:
· назначение, типы, функции проекционных аппаратов;
· назначение и принцип работы оверхед- проектора и ЖК панели;
· назначение и принцип работы мультимедийного проектора.
Проекционные аппараты. Оверхед- проекторы и ЖК панели. Мультимедийные проекторы: принцип действия и классификация. Принципиальные схемы TFT- проекторов, полисиликоновых проекторов, D-ILA, DMD/DLP- проекторов. Их достоинства и недостатки. Принцип действия 3D- проекторов. Основные характеристики мультимедийных проекторов.
Методические указания