Для достижения поставленной цели необходимо научить студентов:
- понимать и использовать характеристики силовых электронных приборов;
- основным алгоритмам управления, применяемым в силовых электронных устройствах;
- правильно классифицировать полупроводниковые преобразователи электрической энергии и описывать основные электромагнитные процессы;
- самостоятельно проводить расчеты по определению параметров и характеристик
устройств силовой электроники:
- самостоятельно проводить элементарные испытания электронных
преобразователей энергии.
2. Требования к уровню освоения содержания дисциплины
Процесс изучения дисциплины должен быть направлен на формирование следующих компетенций:
- способность разрабатывать простые схемы аналоговой, импульсной и цифровой электроники для электроэнергетических и электротехнических объектов (ПК-9);
- способность использовать методы анализа и моделирования линейных и нелинейных цепей постоянного и переменного тока устройств силовой электроники (ПК-
п);
- способность графически отображать геометрические образы изделий и объектов электронных схем и систем (ПК-12);
- готовность обосновывать принятие конкретного технического решения при создании схем управления устройств силовой электроники электроэнергетического и электротехнического оборудования (ПК-14);
- способность рассчитывать электронные схемы и элементы для вторичных цепей, устройств защиты и автоматики электроэнергетических объектов (ПК-15);
- способность рассчитывать режимы работы электронных схем
электроэнергетических установок различного назначения (ПК-16).
В результате изучения дисциплины "Силовая электроника" обучающиеся должны:
знать классификацию, назначение, основные схемотехнические решения устройств силовой электроники и понимать принцип действия и особенности применения силовых полупроводниковых приборов, знать особенности их конструкции
знать основные уравнения процессов, схемы замещения и характеристики и понимать принцип действия и алгоритмы управления в электронных преобразователях электрической энергии,
уметь использовать полученные знания при решении практических задач по проектированию, испытаниями и эксплуатации устройств силовой электроники, ставить и решать простейшие задачи моделирования силовых электронных устройств;
владеть навыками элементарных расчетов и испытаний силовых электронных преобразователей.
3. Содержание дисциплины. Основные разделы
Основные определения. Классификация силовых электронных устройств. Основные виды силовых ключей. Схемы управления (драйверы). Область безопасной работы. Защита силовых электронных ключей формированием траекторий переключения.
Особенности работы трансформаторов и реакторов на повышенных частотах. Потери мощности и способы их снижения. Выбор типа конденсаторов в устройствах силовой электроники. Охлаждение силовых электронных приборов.
Основные схемы выпрямления. Принципы действия, расчетные соотношения для элементов силовой техники. Коммутация и режимы работы выпрямителей, характеристики. Гармонический состав выпрямленного напряжения и первичных токов. КПД и коэффициент мощности. Работа на емкостную нагрузку и противо-ЭДС. Входные и выходные фильтры.
Инверторы, ведомые сетью, характеристики и режимы работы. Расширение областей работы (обеспечение работы в 4-х квадрантах комплексной плоскости параметров по стороне переменного тока). Резонансные инверторы. Автономные инверторы и преобразователей частоты. Структурные схемы управления.
Базовые структуры импульсных преобразователей — регуляторов постоянного тока. Электронные ключи с квазирезонансной коммутацией и их применением в преобразователях постоянного тока.
Области применения силовой электроники. Коммутационные аппараты. Электропривод постоянного и переменного токов. Светотехника. Электротехнология. Агрегаты бесперебойного питания. Вторичные источники электропитания.
Аннотация программы дисциплины
"Теория автоматического управления"
1. Цель и задачи дисциплины
Основной целью дисциплины является формирование у студентов прочной теоретической базы по современным методам исследования систем управления, которая позволит им успешно решать теоретические и практические задачи в их профессиональной деятельности, связанной с получением математического описания, моделированием, анализом, проектированием, испытаниями и эксплуатацией современных систем управления.
Для достижения поставленной цели необходимо научить студентов:
- классифицировать объекты и системы управления и описывать происходящие в
них динамические процессы.
- анализировать структуру и математическое описание систем управления с целью
определения областей их устойчивой и качественной работы.
- проводить синтез систем, их испытания и эксплуатацию. 2.Требования к уровню освоения содержания дисциплны
Процесс изучения дисциплины направлен на формирование следующих компетенций:
- способность демонстрировать базовые знания в области естественнонаучных
дисциплин и готовностью использовать основные законы в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-2);
- способность использовать методы анализа и моделирования линейных и нелинейных электрических цепей постоянного и переменного тока (ПК-11);
- готовность понимать существо задач анализа и синтеза объектов в технической среде (ПК-41).
Обучающиеся должны освоить дисциплину на уровне, позволяющем им свободно ориентироваться в принципах действия, особенностях протекающих процессов, а также уравнениях и схемах, описывающих системы управления, строить теоретически и получать экспериментально их характеристики. Уровень освоения дисциплины должен позволять обучающимся решать задачи по расчету и проектированию, анализу устойчивости и моделированию современных систем управления.
В результате изучения дисциплины обучающиеся должны:
знать принцип действия современных систем управления и особенности протекающих в них процессов;
уметь использовать полученную в результате обучения теоретическую и практическую базу для получения математического описания объектов и систем в виде дифференциальных уравнений, структурных схем: построения их характеристик и моделирования;
уметь использовать полученные знания при решении практических задач по расчету, анализу устойчивости, качества, проектированию систем управления.
получить навыки по испытаниям и эксплуатации систем управления.
3. Содержание дисциплины. Основные разделы
Основные понятия управления. Функциональная схема и классификация систем автоматического управления. Принципы и законы автоматического управления. Математическое описание линейных систем управления. Преобразование Лапласа. Устойчивость, качество, точность и синтез линейных систем управления. Понятие и критерии устойчивости. Показатели качества систем. Методы синтеза по частотным характеристикам.
Дискретные системы и их описание. Релейные, цифровые и импульсные системы. Устойчивость, качество и синтез импульсных систем управления.
Нелинейные системы управления. Исследование систем на фазовой плоскости. Методы гармонической линеаризации. Критерии устойчивости нелинейных систем.
Многомерные линейные системы управления. Описание многомерных линейных динамических систем в пространстве состояний, моделирование, анализ и синтез многомерных систем управления.
Аннотация программы дисциплины
"Электрические и электронные аппараты"
1. Цель и задачи дисциплины.
Освоение теоретических основ и принципов работы электрических и электронных аппаратов (ЭЭА). Изучение основных электромагнитных, тепловых и дуговых процессов в ЭЭА, структур и принципов управления ЭЭА. Приобретение навыков использования физических и электротехнических законов для расчета узлов основных типов ЭЭА. Для решения поставленной цели необходимо научить студентов:
- классифицировать различные типы ЭЭА;
- применять методы анализа различных процессов в ЭЭА, методы получения и
определения взаимосвязи между различными процессами в ЭЭА;
- проводить элементарные испытания ЭЭА.
2.Требования к уровню освоения содержания дисциплины
Процесс изучения дисциплины направлен на формирование следующих компетенций:
- готовность выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, и способностью привлечь для их решения
соответствующий физико-математический аппарат (ПК-3);
- способность использовать методы анализа и моделирования линейных и нелинейных электрических цепей постоянного и переменного тока (ПК-11);
- готовность обосновывать принятие конкретного технического решения при создании электроэнергетического и электротехнического оборудования (ПК-14);
- готовность к составлению заявок на оборудование и запасные части и подготовке технической документации на ремонт (ПК-50).
В результате изучения дисциплины обучающиеся должны:
знать электрические аппараты, как средства управления режимами работы, защиты и регулирования параметров электротехнических и электроэнергетических систем; физические явления в электрических аппаратах и основы теории электрических аппаратов;