Рисунок - 7
Решение
1 Проводим ось Z в сторону свободного конца бруса и определяем реакцию заделки
: 2 Разбиваем брус на участки, границы которых определяются сечениями, где изменяется площадь поперечного сечения или приложены внешние силы. На каждом из участков проводим характерные сечения 1-1, 2-2, 3-3. С помощью метода сечений определяем продольные силы на каждом из участков бруса: мысленно рассекаем брус в пределах первого участка сечения 1-1, отбрасываем верхнюю часть бруса и заменяем ее действие продольной силой N1 (рисунок 7) для оставшейся части составляем уравнение равновесия:
Аналогично находим N2 и N3:
сечение 2-2 (рисунок 7)
;сечение 3-3 (рисунок 7)
.По найденным значениям продольной силы строим соответствующую эпюру. Для этого параллельно оси бруса проведем базовую (нулевую) линию. Левее ее откладываем отрицательные значения N, соответствующие сжатому участку, а правее – положительные значения N, соответствующие растянутому участку (рисунок - 7).
Определяем нормальные напряжения в характерных сечениях бруса по формуле:
; .Строим соответствующую найденным значениям эпюру σ (рисунок - 7)
4 Определяем абсолютное удлинение бруса.
В соответствии с законом Гука:
где Е=2,1*105 МПа – модуль продольной упругости для стали.
Складывая удлинение участков, получим:
Учитывая, что I м=103мм, будем иметь:
(87,5*2,4+43,75*2,2-112,5*2,0)=0,39 мм.Таким образом, абсолютное удлинение бруса
= 0,39 мм.
ЗАДАЧА 5
По данным задачи 2 для двухопорной балки построить эпоры поперечных сил Qу и изгибающих моментов Мх. Подобрать сечение стального двутавра, приняв
[σ] = 160 МПа.
ПРИМЕР 5
Для двухопорной балки построить эпюры поперечных сил Q и изгибающих моментов М. Подобрать сечение стального двутавра, приняв [σ] = 160 МПа.
Дано: F1=24 kH; F2=36 кН; m1=18 кНм;
m2=24 кНм;
=2.0 м; м; м. Рисунок - 8
Решение
1 Составляем уравнение равновесия параллельной системы сил, из которых определяем опорные реакции балки:
(6) Из уравнения (6) находим RAУ:
Из уравнения (5) находим В:
Проверяем правильность определения опорных реакций, составляя сумму проекций всех сил на ось У:
то есть реакции определены верно.
2 Определяем значения поперечной силы Q в характерных сечениях балки, которые обозначим цифрами 1, 2, 3, 4 (рисунок 8 а)
Q1=Q2лев=F1=24 кН;
Q2прав=Q3лев=F1+RАУ=24-13=11 кН;
Q32прав=Q4=F1+RАУ-F2= -RВУ= -25 кН.
По найденным значениям строим эпюру, поперечных сил Q (рисунок 8 б).
3 Аналогично определяем значения изгибающего момента М в характерных сечениях балки:
М1=0;
М2лев=F1*2.0=48 кНм
М2прав=М2лев+m1=48+18=66 кНм;
М3=F1*5.0+m1+RАУ*3,0=120+18-39=99 кНм;
М4=m2=24 кНм.
По найденным значениям строим эпюру изгибающих моментов М (рисунок 8 в).
4 По эпюре изгибающих моментов определяем положение опасного сечения балки (сечение, в котором изгибающий момент имеет наибольшее по абсолютной величине значение). В нашем случае – это сечение 3, где М3=Мmaх=99 кНм. Из условия прочности балки на изгиб
вычисляем необходимый осевой момент сопротивления: .В соответствии с ГОСТ 8239-89 принимаем сечение из стального двутавра № 33 с Wх=597 см3. Имеем перенапряжение:
что находится в разрешенных пределах (менее 5%).
Ответ: сечение балки двутавр № 33.