Смекни!
smekni.com

Основные сведения о трении и смазке (стр. 11 из 19)

Механизм действия вязкостных присадок. Загущенные масла являются растворами высокомолекулярных соединений в дистиллятных маслах. Макромолекулы присадок по размерам в сотни раз превосходят молекулы масла, поэтому растворение полимера в масле приводит к повышению вязкости.

Известно, что загущенные масла при высоких температурах имеют более высокую, а при отрицательных температурах более низкую вязкость по сравнению с обычными (незагущенными) маслами, т.е. сочетают в себе свойства летних и зимних масел. Это объясняется тем, что в холодном масле макромолекулы, будучи свернуты в «клубки», не изменяют его вязкости, а распрямляясь при нагревании, увеличивают вязкость загущенного масла по сравнению с базовым. Применением вязкостных присадок можно повысить вязкость маловязкого масла при основной рабочей температуре до требуемого значения, сохранив пологость вязкостно-температурной кривой, свойственной маловязкому маслу (рис. 9 ).

Рис. 9. Влияние загущающей присадки на вязкостно-температурную харак-теристику масла: 1-натуральное нефтяное масло; 2- загущенное масло при маловязкой основе (точка пересечения кривых 1 и 2 – потребная вязкость при 100°С); 3-масловязкая основа

Масла не имеют определенной, четко выраженной температуры перехода из жидкого в твердое состояние. Границей перехода условно считают температуру потери текучести масла после охлаждения его в стандартных условиях. Эту температуру называют температурой застывания. Застывание масла может быть связано с двумя различными процессами: постепенное повышение вязкости вплоть до превращения масла в аморфную стекловидную массу или образование кристаллического каркаса из высокоплавких парафиновых углеводородов. При производстве масел из них стараются удалить высокоплавкие парафиновые углеводороды. Кроме того понизить температуру застывания можно специальными присадками – депрессорами. Отечественные исследователи в 20-х годах прошлого века показали способность высокомолекулярных смолистых веществ понижать температуру застывания масел. В качестве депрессорных присадок предложено использовать широкий круг различных химических веществ, которые при всем их разнообразии имеют некоторые сходные черты – наличие полярных групп или ароматических ядер и длинных алифатических цепей, высокую молекулярную массу (800 – 1000) и хорошую растворимость в минеральных маслах. В качестве депрессоров, рекомендованы алкилпроизводные нафталина и алкилфенолы. Где R – алкил С24 – С30.

Положение алкильных радикалов в этих соединениях окончательно не установлено, т.к. алкилирование нафталина осуществляется хлорированным парафином, представляющим собой смесь высокомолекулярных алкилхлоридов в различных положениях.

Высокоэффективный продукт типа парафлоу (левая формула) был получен при алкилировании нафталина хлорированным церезином. Для остаточных масел в качестве депрессора рекомендуется использовать алкилфенольные соединения с длинными парафиновыми цепями.

В качестве депрессоров возможно применение ряда соединений, синтезированных конденсацией различных алкилфенолов с длинными боковыми цепями (моно- и три-алкилфенолов) и триалкил –β-нафтола с формальдегидом и 1,2 дихлорэтаном.

Механизм действия депрессорных присадок весьма сложен и до конца не изучен. Одни исследователи считают, что твердые углеводороды, кристаллизующиеся из масла, представляют собой смесь углеводородов парафинового, нафтенового и ароматического рядов. Большинство углеводородов относится к изоморфным веществам, способным кри-сталлизоваться вместе, образуя большие смешанные кристаллы. Очевидно, что одна из возможностей образования смешанных кристаллов обусловлена наличием у компонентов длинных углеводородных цепей (в основном нормального строения). Исследования микроструктуры смешанных кристаллов при помощи электронного микроскопа показали, что их форма и, в особенности, их размеры при оптимальных условиях охлаждения зависят от концентрации твердых углеводородов, хотя и относящимся к различным классам углеводородов, но близких по температуре плавления, и от того, какой тип углеводородов составляет зародыш будущего кристалла. Существенное влияние на формирование кристаллов имеет вязкость дисперсной среды (масла): чем выше вязкость среды, тем меньше радиус сферы, из которой выделяющиеся молекулы дисперсной фазы (твердых углеводородов) могут достичь зародыша кристалла, т.е. тем вероятнее возникновение новых центров кристаллизации и увеличения числа кристаллов при их малых размерах.

Задолго до появления синтетических депрессоров было отмечено, что некоторые из природных ПАВ типа смол, находящихся в нефтях, препятствуют их застыванию. Исследования показали, что асфальто-смолистые вещества в зависимости от их химического состава обладают двойным действием на процесс кристаллизации парафинов. Нерастворимые в фенолах смолы, в молекулах которых имеются достаточно длинные боковые алифатические цепи, оказывают объемное действие, выражающееся в изменении формы кристаллов в результате внедрения молекул смол в кристаллическую структуру парафинов, а растворимые в феноле смолы проявляют поверхностное действие – они адсорбируются на выделившихся кристаллах и способствуют агломерации кристаллов в неизменном виде.

Механизм действия синтетических депрессоров до настоящего времени подвергается исследованию и обсуждению. Согласно наиболее общему представлению парафлоу адсорбируется на кристаллах парафинов, препятствуя их росту, и вытесняют с их поверхности масляный слой.

При изучении алкилароматических углеводородов с разной длиной и различным числом боковых цепей и колец (моно- и диалкилпроизводных бензола, нафталина, антрацена и тетралина) оказалось, что увеличение длины и числа боковых цепей улучшает депрессорные свойства алкилароматических углеводородов. Наиболее эффективными депрессорами оказались дициклоароматические углеводороды с длинными боковыми цепями.

Эффективность депрессорных присадок тесно связана с углеводородным составом масел, содержанием в них смол и степенью их очистки. Для каждого масла существует некоторая оптимальная концентрация твердых углеводородов, ниже и выше которой действие присадки на температуру застывания масла не проявляется. Ароматические углеводороды, особенно асфальто-смолистые вещества, являются антагонистами депрессоров. Наилучшей воспри-имчивостью к депрессорам обладают парафин-нафтеновые углеводороды масляных дистиллятов. Причем более высокое содержание насыщенных углеводородов нормального строения усиливает влияние присадки.

Таким образом, возможности дальнейшего улучшения низкотемпературных свойств масел с помощью депрессоров зависит как от синтеза новых высокоэффективных присадок, так и от изучения механизма их действия и правильного подбора условий их применения.

4.2. Смазывающая способность масел

В начале данной главы были подробно изложены механизмы и природа трения, возникающие при работе сопряженных пар трения в различных условиях смазки. Ниже излагаются конкретные примеры применения присадок к смазочным маслам, уменьшающим трение и износ при работе трущихся тел.

В случаях, когда между трущимися деталями не удается обеспечить жидкостной смазки, износ этих деталей и величина силы трения зависят от свойств масла, которые условно можно назвать смазывающими. Чем лучше смазывающие свойства масла, тем меньше износ и потери на трение, более надежна защита трущихся поверхностей от схватывания и заедания металлов.

Смазывающая способность масел зависит от целого ряда факторов, но основное влияние оказывают физико-химические свойства углеводородов и присадок, входящих в состав масла.

Смазывающая способность масла должна проявляться в двух положительных качествах масла: во-первых, в его способности предотвращать износ поверхностей трения в условиях устойчивой граничной пленки масел в области окислительного износа, т.е масло должно обладать противоизносными свойствами; во-вторых, в способности масла отодвигать в сторону больших нагрузок, больших скоростей скольжения и больших температур момент разрыва граничной пленки масла и наступления схватывания поверхностей металлов, т.е. масло должно обладать противозадирными свойствами. В ряде случаев масла, обладающие хорошими противозадирными свойствами, не имеют хороших противоизносных свойств и наоборот.

Это объясняется тем, что противозадирные свойства обуславливаются присутствующими в маслах химически активными веществами (в частности, веществами, содержащими S, Cl, P, O).

Среди присадок к маслам наиболее широкое применение нашли соединения, содержащие серу и фосфор в виде производных эфиров дитиофосфорных кислот. В основе получения этих эфиров лежит реакция сульфида фосфора (V) со спиртами, алкилфенолами, аминами, кислотами, т.е. с соединениями, содержащими активный атом водорода:

RO S

-H2S \ //

4ROH + P2O5 —→ 2 P

/ \

RO SH

Среди различных соединений пятивалентного фосфора в качестве противоизносных присадок наибольшее распространение получили диалкилдитиофосфаты металлов, в ряде случаев их рекомендуют для предотвращения питтинга. В состав присадок этого типа входят в основном дитиофосфаты цинка, бора и бария.

┌ RO S ┐

│ \ // │

│ P │ Me где Мe- Zn, B, Ba R – алкильный радикал

│ / \ │

└ RO S-

К наиболее широко распространенным присадкам такого типа относятся серийно выпускающиеся присадки ВНИИ НП – 360, ВНИИ НП – 354.

При тяжелых режимах трения, когда на трущихся поверхностях металлов развиваются высокие температуры, химически активные элементы, соединяясь с металлом поверхностей трения, образуют пленки, которые предотвращают контакт чистых поверхностей металлов и их схватывание. Чем химически активнее смазка, тем лучше ее противозадирные свойства. При легких режимах граничного трения, когда схватывания металла не наблюдается, износ поверхностей происходит в результате образования, последующего разрушения и удаления с поверхностей тончайших пленок – продуктов взаимодействия химически активных элементов масла с материалом поверхностей трения. В этом случае повышенная химическая активность масел приводит к увеличению скоростей износа.