Смекни!
smekni.com

Двигатель внутреннего сгорания со сверхвысокой степенью сжатия (стр. 3 из 12)

Следует сразу отметить, что сравнение работы ДВС с циклом Карно может носить только условный характер. Для соблюдения в работе ДВС «принципа Карно» необходимо на такте изотермного расширения подавать в цилиндр не только топливо, но и дополнительные порции кислорода. А поскольку этого не делается, разница между величинами температур начала расширения, максимальной температурой цикла и на момент окончания тепловыделения в реальном ДВС столь велика, что о величинах Т1 и Т2 в работе ДВС можно говорить лишь, как о неких средних, условных величинах.

Вместе с тем, осмысление процессов происходящих в цикле Карно дает возможность установить основополагающие принципы работы ДВС.

Для оценки характера происходящих в конкретном ДВС рабочих процессов необходимо брать за основу его рабочий цикл. При рассмотрении конкретного рабочего цикла ДВС следует исходить из того, что цикл совершается за определенный промежуток времени, масса рабочего тела составляет конкретную величину и в это рабочее тело можно ввести только конкретное количество тепла.

Т.е. при рассмотрении рабочего цикла ДВС применительно к циклу Карно константами следует считать массу рабочего тела и количество вводимого тепла.

Современная теория ДВС проводит подробный анализ индикаторной работы ДВС по его внешней скоростной характеристике. Анализ индикаторной работы ДВС в режиме частичных нагрузочных характеристик практически отсутствует. Между тем, ответ на вопрос о том, как повысить КПД ДВС и что сделать, чтобы он работал, дает анализ его работы именно в указанных режимах.

По циклу Карно путем адиабатного сжатия температура рабочего тела доводится до величины Т1, после этого в рабочее тело вводится тепло и при сохранении температуры Т1 совершается процесс расширения. Во второй части расширения ввод тепла прекращается, процесс становится адиабатным. Температура рабочего тела от величины Т1 доходит до величины Т2.

При использовании в качестве источника тепла углеводородного топлива до выделения тепла оно должно пройти стадию предварительной подготовки, которая включает в себя период формирования очага пламени (период задержки воспламенения) и стадию распространения пламени по фронту, т.е. указанный процесс занимает определенный промежуток времени.

Для обеспечения нормального прохождения рабочего цикла современного ДВС часть тепла в количестве Q2 для доведения температуры (соответственно и давления) до величины Т1 вводится при движении поршня к ВМТ. Угол начала ввода и количество необходимого тепла Q2 определяется массой участвующего в цикле рабочего тела. Остальная часть тепла (поскольку величины Q и Q2 для данного рабочего цикла становятся константами) в количестве Q-Q2 вводится на такте расширения.

На такте сжатия в бензиновом ДВС по достижении в цилиндре определенного давления подается искра, происходит формирование очага пламени, затем пламя начинает распространяться по фронту. Повышение температуры и давления топливно-воздушной смеси с момента формирования очага пламени происходит под воздействием 2-х факторов: сжатия и ввода тепла. Примерное соотношение воздействия этих факторов видно по данным, полученным с помощью программы расчетного моделирования для бензинового ДВС со степенью сжатия Е=10 (условно: ход поршня 90 мм, высота камеры сгорания 10 мм).

1. При угле начала тепловыделения в 15* до ВМТ температура смеси в конце такта всасывания 65* С, на момент начала тепловыделения температура 355* С, давление 15.5 кг/см2, на момент ВМТ поршня температура 834* С, давление 33.2 кг/см2.

2. При тех же вводных данных, но при угле начала тепловыделения в 0 градусов температура смеси в конце такта всасывания 65* С, на момент ВМТ поршня в конце такта сжатия температура смеси 385* С, давление 19.5 кг/см2.

Т.е. увеличение температуры рабочего тела на 449* С и давления на 13.7 кг/см2 на такте сжатия получено за счет ввода тепла.

В виду этого такт сжатия в современном ДВС можно отнести к адиабатному лишь условно, поскольку увеличение температуры и давления рабочего тела совершается и путем сжатия и путем ввода тепла. А это приводит к нарушению следующих условий цикла Карно:

1. Условие равенства адиабатных циклов расширения и сжатия. Поскольку на завершающем отрезке такта сжатия в рабочее тело вводится тепло в количестве Q2, цикл становится больше на количество отрицательной работы эквивалентной теплу Q2.

2. Сокращается продолжительность и протяженность цикла изотермного расширения по углам ПКВ. Поскольку количество тепла Q, которое можно ввести в рабочее тело в ДВС является константой, то ввод части этого тепла в количестве Q2 на такте сжатия уменьшает его количество на цикле изотермного расширения до величины Q-Q2. При этом для нейтрализации отрицательной работы, совершаемой теплом Q2 на такте сжатия, из оставшегося количества тепла Q-Q2 на такте расширения расходуется еще одно количество тепла Q2, что существенным образом снижает КПД двигателя.

Применительно к работе современного ДВС в диаграмме цикла Карно отрезок такта адиабатного сжатия, на котором тепло в количестве Q2 вводится в рабочее тело, должен быть выделен в особый переходный сектор. Отрезок такта изотермного расширения по углам ПКВ должен быть уменьшен на величину Q2. Соответственно этому либо величина Т1 должна быть уменьшена, либо величина Т2 должна быть увеличена на количество тепла 2Q2 и величину потерянной температуры Т. С учетом изложенного работа современного ДВС по циклу Карно может быть отображена в виде штриховой диаграммы на рисунке 1.

Признание массы m рабочего тела константой означает, что в него не возможно ввести тепла больше, чем Q. А это означает, что в рабочем цикле современного ДВС без изменения массы рабочего тела не возможно удлинить протяженность цикла изотермного расширения.

В виду не совершенства устройства и принципа работы современного ДВС простое уменьшение угла тепловыделения приводит к ухудшению эффективных характеристик двигателя. Происходит падение температуры и давления топливно-воздушной смеси на сжатии, что отрицательно влияет на формирование и подготовку смеси к горению. При переходе к фазе активного горения на линии расширения объем камеры сгорания и, соответственно, расстояние на которое пламя должно распространиться оказывается слишком большим и топливо не успевает сгореть.

Попытки уменьшить угол тепловыделения, совмещая это с увеличением степени сжатия при сохранении устройства и принципа работы современного ДВС, также приводят к отрицательным результатам. При работе под нагрузкой такой двигатель разрушается меньше чем за 1 минуту.

Но если найти правильное решение вопроса, исключив ввод тепла в рабочее тело на такте сжатия, можно увеличить степень сжатия ДВС и существенно повысить его эффективность.

Суть равенства циклов адиабатного сжатия и расширения заключается в том, чтобы отрицательную работу, затраченную на сжатие рабочего тела, получить в виде положительной работы адиабатного расширения. Если исключить ввод тепла на такте сжатия и получить требуемые температуру и давление рабочего тела путем сжатия, то тепловая протяженность циклов адиабатного сжатия и расширения становится, примерно, одинаковой и влияния на КПД двигателя не оказывают.

Если расчитывать линии расширения бензиновых двигателей со степенями сжатия 10 и 25, сравнение происходящих в них процессов на такте расширения дает следующую картину.

Двигатель № 1 с Е=10 (Д1): ход поршня 90 мм, высота камеры сгорания 10 мм, угол начала тепловыделения 15* до ВМТ, величина Рz достигается при 15* ПКВ после ВМТ.

Двигатель № 2 с Е=25 (Д2): ход поршня 90 мм, высота камеры сгорания 3.75 мм, угол начала тепловыделения 0* по углу ПКВ, величина Рz достигается при 0* ПКВ.

В обоих двигателях продолжительность тепловыделения 50* по углу ПКВ.

В Д1 при нахождении поршня в 15* после ВМТ (высота камеры сгорания при этом 11.53 мм) значительная часть тепла уже введена, но интенсивный процесс ввода тепла еще продолжается. При дальнейшем движении поршня от ВМТ температура газов растет, но давление из-за быстрого увеличения объема камеры сгорания падает. Примерно к 35* ПКВ (отрезок а-b1 рис. 1) процесс ввода тепла завершен, объем камеры сгорания в этой точке равен 18.14 мм. Далее происходит процесс адиабатного расширения.

В Д2 увеличение степени сжатия рабочего тела (соответственно, создание благоприятных условий для сгорания смеси) позволяет начать ввод в него тепла при нахождении поршня в ВМТ. При указанном положении поршня давление Рс= Рz, но температура (примерно на 300*С) меньше, чем в Д1. Начало распространения пламени по фронту совпадает с началом движения поршня от ВМТ. Увеличение фронта пламени сопровождается увеличением количества выделяемого тепла, ростом температуры и объема газов. Вместе с тем, увеличивается и объем камеры сгорания. Взаимодействие указанных факторов поддерживает величину давления на одном уровне.