ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ
Digital signal processing
Тема 5. ФИЛЬТРАЦИЯ СЛУЧАЙНЫХ СИГНАЛОВ
Как бы ни кичились люди величием своих знаний, последние часто бывают следствием не великих замыслов, а простой случайности.
Франсуа де Ларошфуко. Французский писатель моралист. XVII в.
Но чтобы извлекать из мусора случайностей, которые на тебя сваливаются, что-нибудь полезное, не говоря уже о великом, нужно иметь в своем черепе хорошо обученную и настроенную фильтровальную систему.
Евгений Кучурин. Геофизик Уральской школы. XX в.
Содержание
1. Фильтрация случайных сигналов. Сохранение природы сигнала. Математическое ожидание. Корреляционные соотношения.
2. Спектры мощности случайных сигналов. Спектр мощности выходного сигнала. Средняя мощность выходного сигнала. Дисперсия выходного сигнала. Взаимный спектр мощности входного и выходного сигналов. Усиление шумов. Функция когерентности.
Введение
Если сигнал на входе фильтра является детерминированным, то его соотношение с выходным сигналом однозначно определяется импульсным откликом фильтра. Таким же однозначным является соотношение входа - выхода и для случайных сигналов, однако в силу природы последних аналитическое представление как входного сигнала, так и отклика системы, не представляется возможным. Для описания реакции фильтра на случайный входной сигнал используется статистический подход.
5.1. Фильтрация случайных сигналов [4, 15].
Если параметры случайного входного сигнала специально не оговариваются, то по умолчанию принимается, что на вход фильтра поступает реализация случайного стационарного процесса x(kDt) с нулевым средним, которая вызывает сигнал y(kDt) на выходе фильтра. Значение Dt, как обычно, принимаем равным 1.
Сохранение природы сигнала. Допустим, что фильтр имеет импульсный отклик h(n) = exp(-a·n), n ³ 0. Зададим на входе фильтра стационарный квазидетерминированный случайный сигнал, который не обладает свойством эргодичности, но имеет все свойства случайного сигнала, и может быть описан в явной математической форме:
Рис. 5.1.1. Фильтрация квазидетерминированного сигнала. |
x(k) = A + cos(2k+j),
где A и j - взаимно независимые случайные величины, причем значение j равномерно распределено в интервале [0, 2p]. При этом выходной сигнал определится выражением:
y(k) = h(n) ③ x(k-n) º
h(n) x(k-n)y(k) = A/3 + [3 cos(2k+j) + 2 sin(2k+j)]/13.
Из этого выражения следует, что выходной сигнал фильтра также является случайным и содержит те же самые случайные параметры, что и входной сигнал, а, следовательно, для него существуют определенные статистические характеристики. Пример реализации квазидетерминированного случайного сигнала и его фильтрации аналогом сглаживающего RC-фильтра приведен на рис. 5.1.1.
Математическое ожидание (индекс операции – М) произвольного входного случайного стационарного сигнала x(k) на выходе фильтра определится выражением:
= М{y(k)}= M{ h(n) x(k-n)}= M{x(k-n)}h(n) =
=
h(n) = Кпс. (5.1.1)Отсюда следует, что математическое ожидание выходных сигналов фильтра равно математическому ожиданию входных сигналов, умноженному на коэффициент усиления фильтром постоянной составляющей. При Кпс = 1 среднее значение выходных сигналов не изменяется и равно среднему значению входных сигналов. Если фильтр не пропускает постоянную составляющую сигналов (сумма коэффициентов импульсного отклика фильтра равна нулю), то случайный выходной сигнал всегда будет иметь нулевое математическое ожидание.
Корреляционные соотношения. Для нецентрированных входных сигналов x(k) размером (0-К) автокорреляционная функция (АКФ), а равно и функция автоковариации Kx(n) (ФАК) для центрированных случайных сигналов, вычисляется по формуле:
Rx(n) = [1/(K+1-n)]
x(k) x(k+n). (5.1.2)Формула применяется довольно редко, в основном для детерминированных сигналов с небольшим числом отсчетов. Для случайных и зашумленных сигналов уменьшение знаменателя (K-n) и числа перемножаемых отсчетов по мере увеличения сдвига приводит к нарастанию статистических флюктуаций вычисления АКФ. Большую достоверность в этих условиях обеспечивает вычисление АКФ в единицах мощности сигнала по формуле:
Rs(n) =
sk×sk+n, sk-n = 0 при k+n > K, (5.1.3)т.е. с нормированием на постоянный множитель 1/K и с продлением сигнала нулевыми значениями (в левую сторону при сдвигах k-n или в правую сторону при использовании сдвигов k+n). Эта оценка является смещенной и имеет несколько меньшую дисперсию, чем по формуле (5.1.2). Разницу между нормировками по формулам (5.1.2) и (5.1.3) можно наглядно видеть на рис. 5.1.2.
Рис. 5.1.2.
Формулу (5.1.3) можно рассматривать, как усреднение суммы произведений, т.е. как оценку математического ожидания:
Rs(n) = M{sk sk+n} @
. (5.1.4)По аналогичной формуле может быть вычислена и АКФ выходных сигналов. Для произведения выходных сигналов y(k) и y(k+n), образующих функцию автокорреляции выходных сигналов, можно также записать (без дополнительных множителей):
y(k) y(k+n) =
h(i)h(j) x(k-i)x(k+n-j).Если взять математические ожидания от обеих частей этого равенства, то, с учетом соотношения в правой части под знаками сумм
M{x(k-i) x(k+n-j)} = -Rx(k-i-k-n+j) = Rx(n+i-j),
получим:
Ry(n) =
h(i)h(j) Rx(n+i-j) º Rx(n) ③ h(n+i) ③ h(n-j). (5.1.5)Таким образом, функция автокорреляции выходного сигнала равна АКФ входного сигнала, свернутой дважды, в прямом и обратном направлении, с импульсным откликом фильтра, что сохраняет четность АКФ выходного сигнала. Для центрированных процессов аналогичное заключение действительно и для ковариационных функций. На рис. 5.1.3 приведен пример нормированных АКФ входной и выходной случайных последовательностей при фильтрации RC-фильтром, форма импульсного отклика которого также приведена на рисунке.
Рис. 5.1.3. Функции корреляционных коэффициентов.
Заметим, что для свертки импульсных откликов, производя замену n-j = m, мы имеем равенство:
h(n+i) ③ h(n-j) = h(m+i+j) ③ h(m) = h(m) ③ h(m+p) = Rh(m),
где Rh(m) - функция корреляции импульсного отклика фильтра. Отсюда:
Ry(n) = Rx(n) ③ Rh(m). (5.1.5')
Это означает появление в случайном сигнале на выходе фильтра определенной корреляционной зависимости, определяемой инерционностью фильтра. Эффективный интервал tk корреляции данных в сигнале тем меньше, чем выше верхняя граничная частота wв его спектра (по уровню 0.5):
tк = p/wв =1/2fв.
Оценка интервала корреляции для конечных (непериодических) функций, как правило, производится непосредственно по функциям автокорреляции R(n):
tk = 2Sn|R(n)/R(0)| - 1, (5.1.6)
где значение n ограничивается величиной 3-5 интервалов спада центрального пика до величины порядка 0.1×R(0). Без такого ограничения за счет суммирования модуля флюктуаций, не несущих информации, значение tk завышается относительно расчетного по спектральной характеристике сигнала. Значение tk может определяться также непосредственно по координате пересечения нулевой линии функцией автоковариации K(n). Дальше обычно начинаются статистические флюктуации значения K(n) около нулевой линии, вызванные ограниченностью выборки.
Рис. 5.1.4. Функции корреляционных коэффициентов большой выборки. |
Функция Rx(n) случайных статистически независимых отсчетов близка к d-функции, свертка которой с Rh(m) приведет к формированию на выходе выходного сигнала, нормированная форма АКФ которого будет стремиться к форме Rh(m). При достаточно большой выборке случайных отсчетов входного сигнала это означает практически полное повторение функцией Ry(n) формы корреляционной функции импульсного отклика, как это можно видеть на рис. 5.1.4, который отличается от рис. 5.1.3 только количеством выборки К=10000. Соответственно, интервал корреляции выходных сигналов для случайной входной последовательности можно определять непосредственно по функции (5.1.6) непосредственно импульсного отклика фильтра.