Смекни!
smekni.com

Пособие предназначено для студентов дневного и вечернего отделений. Указани я (стр. 2 из 9)

Задача 2. Выбрать сторону параллелограмма, пересекающую треугольник ABC. Построить точку пересечения стороны парал­лелограмма с треугольником. Записать алгоритм решения. Задачу решить в стандартной приведён­ной диметрии. Видимые части посредника и треугольника выделить цветом.

Примерные композиции форматов показаны на рис. 8 и 9. Условные обозначения: КЧ – комплексный чертёж, Акс – аксонометрия, А – алгоритм, Т – таблица координат точек. Размеры и содержание таблицы даны на рис.10.

Рис. 8 Рис. 9

Материал для изучения

Для успешного выполнения задания необходимо решить соответствующие задачи в рабочей тетради, а также изучить теорию по одному из учебников.

[1] Глава 2: §§ 2.1–2.4.

[2] §§1–4.

[3] §31.

[4] §4.4a, примеры 1 и 3; §8.2.

Этапы выполнения задания

1-й этап – подготовительный.

- Оформить формат.

- Начертить таблицу и вписать координаты заданных точек.

- Предъявить для проверки преподавателю.

2-й этап – решение задачи I в тонких линиях.

- Построить треугольник ABC и параллелограмм DEFG. Определить координаты точки G и вписать их в таблицу.

- Построить искомую линию пересечения. Посредники должны быть заданы разомкнутой линией и обозначены. Обосновать выбор по­средников (устно, по требованию преподавателя).

- Определить видимость с помощью конкурирующих точек. Конкури­рующие точки должны быть заданы и обозначены.

- Записать алгоритм решения задачи в пространстве.

- Предъявить для проверки преподавателю.

3-й этап – решение задачи 2 в тонких линиях.

- Построить треугольник и сторону параллелограмма.

- Построить искомую точку пресечения. Задать и обозначить посредник.

- Определить видимость прямой с помощью конкурирующих точек. Конкурирующие точки должны быть заданы и обозначены.

- Записать алгоритм решения задачи в пространстве.

- Предъявить для проверки преподавателю. Получить разрешение на обводку чертежа.

4-й этап – заключительный.

- Удалить ненужные линии.

- Выделить цветом видимые части геометрических фигур.

- Обвести чертёж.

- Предъявить преподавателю на подпись.

Методические указания и примеры решения

З а д а ч а I

Напомним в общих чертах решение задачи на построение ли­нии пересечения двух плоскостей. Искомая прямая строится по двум точкам. Эти точки определяются с помощью двух плоскостей-посредников. Каждый посредник пересекает заданные плоскости по двум прямым. Точка пересечения этих прямых принадлежит искомой линии. В общем случае для решения задачи требуется построить 8 вспомогательных точек и по ним провести 4 вспомогательные пря­мые. Однако в каждом конкретном случае следует искать возмож­ность сократить число таких точек и линий за счет использова­ния точек и линий, которые заданы по условию задачи. Точность построения прямых тем выше, чем больше расстояние между точка­ми, задающими эти прямые.

Трудоёмкость и точность графических построений во многом определяется выбором посредников. Это исследовательская часть работы. Основные направления учебно-исследовательской работы (УИРС) в данной задаче:

1. Если посредники параллельны?

2. Если посредники проходят через прямые, которые задают плоскости?

3. Расстояние между проекциями точек, задающих вспомога­тельные прямые, должно быть не менее 20 мм (условное число).

Пункт I ведёт к сокращению вспомогательных точек с 8 до 6. Пункт 2 ведет к сокращению числа вспомогательных точек и ли­ний в два раза. Пункт 3 обеспечивает достаточную точность гра­фических построений. По какому пути пойти? По первому? По второму? Использовать то и другое? А требования пункта 3? Всё зависит от конкретных условий задачи. Думайте и решайте!

Пример решения (рис.11):

1. По заданным точкам строим треугольник и параллелограмм. Для построения вершины G используем свойство параллелограмма.

2. Через стороны параллелограмма DE и FG проводим парал­лельные посредники:

Σ (Σ2) и Σ/( Σ/2 ). (Таким образом, мы выбрали сразу два направления УИРС: первое и второе).

3. Пресекаем посредник Σ с плоскостью ABC по прямой m. Прямая m строится по точкам I и 2, которые получаются путём пе­ресечения посредника со сторонами треугольника АС и АВ. (Расстояние между проекциями точек соответствует требованию пункта 3). Прямые DE и m принадлежат посреднику и пересекаются в точке K искомой линии.

4. Пересекаем посредник Σ/ с плоскостью ABC по прямой m/. Прямая m/ проводится через точку 3 параллельно прямой m. Точка 3 определяется пересечением прямой GF с посредником. Прямые GF и m/ пересекаются в точке L. Это вторая точка искомой линии.

5. Cтроим искомую прямую ℓ(K,L) и ограничиваем её отрезком [КМ], по которому пересекаются треугольник и параллелограмм.

6. Определяем видимость с помощью конкурирующих точек. На фронтальной проекции используем точки I и 4, у которых 12=24. Точка I принадлежат треугольнику, точка 4 - параллелограмму. Фронтальная проекция точки 4 видима, значит видима в этом мес­те и часть параллелограмма. Аналогично с помощью точек 5 и 6 определяется видимость на горизонтальной проекции.

7. Запишем алгоритм решения (рис.11).

Что дал нам выбор посредников?

1. Задача решена при помощи 2-х вспомогательных прямых и 3-х вспомогательных точек вместо 4-х прямых и 8-ми точек в общем случае. Это сокращение трудоёмкости.

2. Выдержаны требования пункта 3 УИРС. Этим обеспечена до­статочная точность построения вспомогательных прямых.



З а д а ч а 2

Пример решения (рис.11):

1. Зададим систему аксонометрических осей. С помощью коор­динатных ломаных линий построим диметрию и вторичную проекцию треугольника и стороны параллелограмма. Укажем масштаб аксоно­метрического изображения.

2. Зададим горизонтально проецирующий посредник Г, проходящий через заданный отрезок DE. Вторичная проекция посредника Г/1 определяется концами вторичной проекции отрезка DЕ.

3. Пересекаем посредник Г с плоскостью треугольника ABC по прямой m. Прямая m строится по точкам 1 и 2, которые полу­чаются путем пересечения посредника сторонами треугольника АС и BC.

4. Прямые DE и m принадлежат посреднику и пересекаются в искомой точке К.

5. Запишем алгоритм решения (рис.12).


Задание 2. ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ

Цель задания - получить практические навыки самостоятельно­го речения задач с элементами УИРС по теме задания.