Смекни!
smekni.com

Методические указания к лабораторным работам для студентов машиностроительных специальностей Томск 2007 (стр. 4 из 9)

Машины для испытаний

Машины для экспериментальных исследований обычно являются универсальными и позволяют осуществлять испытания на растяжение, сжатие, изгиб. Возможности их определяются размерами рабочего пространства, в котором размещаются образцы и измерительные устройства, и создаваемым усилием. Усилие может создаваться грузами через систему рычагов, либо при помощи гидравлического давления. Соответственно принципу работы, машина называется рычажной или гидравлической.

Машины имеют устройства для записи диаграмм деформирования образцов. Изменение всей длины образца определяется смещением устройств крепящих образец, (захватов, платформ машины) относительно друг друга. Для точного измерения малых изменений части длины образца применяются специальные приборы, которые называют тензометрами. Тензометры устанавливаются на рабочей длине образца.

Тензометры

Назначение тензометров - регистрация малых изменений расстояний между двумя точками на поверхности деталей. По принципу действия они классифицируются на механические, оптические, индуктивные, емкостные, резистивные и т.д. Среди механических устройств широкое применение получил шарнирно-рычажный тензометр Гугенбергера (рис.2.4).


Основными техническими параметрами его являются база В и коэффициент преобразования измеряемой величины
(изменение В) в регистрируемую S (показание тензометра). Коэффициент преобразования К называется коэффициентом усиления тензометра.

На рабочей части образца устанавливаются два тензометра на противоположных сторонах диаметральной плоскости. Среднее арифметическое их показаний позволяет исключить из результатов измерений погрешности от дополнительного изгиба стержня из-за возможного эксцентриситета приложения нагрузки (не совпадение с осью стержня)

Перед началом испытания (нагружением) образца стрелка тензометра устанавливается регулирующим механизмом на начало шкалы. Отсчёт значений нагрузки и показаний тензометра должен быть одновременным (синхронным).

Тензометрами можно зарегистрировать только упругую часть диаграммы со входом в зону пластического деформирования. Если шкалы тензометра недостаточно для регистрации всей упругой зоны (стрелка выходит за пределы шкалы), её следует переместить назад регулирующим винтом и продолжать измерения. При наличии площадки текучести стрелки тензометров зашкаливают (непрерывное движение) и их, чтобы не повредить, необходимо снять с образца.

II. Эксперимент

1. Машина для испытаний (указать).

2. Два тензометра Гугенбергера.

3. Штангенциркуль.

Образец: Изобразить до и после испытания. Отдельным эскизом показать зону разрушения, например:


Схема испытания: (изображена на рис.2.4, указать базу тензометра и коэффициент усиления).

Таблица наблюдений


Машинная диаграмма: привести копию диаграммы, полученной с помощью машины. На диаграмме отметить характерные точки и числовые значения соответствующих нагрузок (характерные нагрузки).

Обработка экспериментальных результатов

Экспериментальные результаты "нагрузка – показания тензометров" можно преобразовать в результаты "напряжения – деформации"

,
,

затем построить график (рис.2.2,а), по которому непосредственно определяются модуль упругости, предел пропорциональности и предел текучести истинный или условный.

Целесообразней эту часть диаграммы построить по значениям таблицы наблюдений. График (рис.2.6 как пример части диаграммы, не имеющей площадки текучести) с равномерной оцифровкой осей и указанием размерности должен иметь размеры не менее 10х15

. Выделить все экспериментальные точки. Провести диаграммную линию, усредняющую их разброс, и линию упругого деформирования. Точка отклонения от неё укажет значение нагрузки соответствующей пределу пропорциональности. Для вычисления модуля упругости материала использовать координаты двух любых точек принадлежащих прямой линии.

Примечание: Может оказаться, что тензометрами не зафиксировано начало пластического деформирования (построенный график представляет прямую линию), тогда предел пропорциональности устанавливается по машинной диаграмме аналогичным образом. Определение предела пропорциональности является довольно тонкой операцией, поэтому его значение не является столь надёжной характеристикой, как другие.

Механические характеристики:

(снабжать техническими названиями и в окончательном представлении числовых значений использовать общепринятые размерности).

1. Модуль упругости. Закона Гука

при растяжении стержня, в котором напряжения
и деформации
принимает выражение

.

2. При измерении тензометрами

,
,

,
. Из закона Гука следует:

….(МПа)

,

и
,
- координаты двух точек прямой линии на графике.

Все другие характеристики вычисляются по их определению (см. выше).

3. Предел пропорциональности

(МПа)

4. Предел текучести

(МПа).

При работе с графиком "PS" для установления нагрузки условного предела текучести

вычисляется
, соответствующее остаточной деформации
(0.2%):
.

Например, при работе с тензометрами

:

.

5. Временное сопротивление

(МПа).

6. Разрушающее напряжение

(МПа).

7. Относительное остаточное удлинение

(%)

8. Относительное остаточное сужение

(%).

Выводы: Наблюдаемые особенности деформирования и разрушения материала. Заключение о материале (хрупкий, пластичный), анализ возможных неточностей в количественных оценках определённых характеристик. Сравнение их со справочными и определение марки стали. Установление (назначение) допускаемого напряжения.

Вопросы для самопроверки см. стр. 38.

Назначение допускаемых напряжений

и запасы прочности (коэффициент надёжности)

Допускаемое напряжение

- это напряжение, которое не рекомендуется превышать. Оно необходимо для выполнения расчётов на основе условия прочности (проектных, при определении допускаемых нагрузок):

Допускаемые напряжения устанавливаются из очевидного соображения: максимальные напряжения

в материалах должны быть меньше какого-то предельного, при достижении которого элементы конструкций из них теряют своё функциональное назначение (приобретают необратимые изменения форм, размеров, разрушаются). Соответственно, допускаемое напряжение определяется выражением:

, где
- коэффициент запаса.