Смекни!
smekni.com

Методические указания к лабораторным работам для студентов машиностроительных специальностей Томск 2007 (стр. 5 из 9)

Предельным напряжением

для материалов элементов конструкций длительного пользования, которые должны сопротивляться только упруго, должен бы быть предел пропорциональности. Однако, как можно заметить, определение его в значительной степени зависит от качества экспериментальных результатов и их обработки. По этой причине предел пропорциональности (упругости) в справочные данные по свойствам материалов обычно не включается. Объективными и надёжно определяемыми характеристиками являются предел текучести и предел прочности.

Предельным напряжением для пластичных материалов считается предел текучести (истинный или условный в справочных данных не различаются), для хрупких - предел прочности (временное сопротивление).

Коэффициент запаса назначается и значение его должно быть всегда больше единицы.

Казалось бы, чем больше запас прочности, тем надёжнее деталь в работе. Однако увеличение запаса прочности сверх необходимого ведёт к увеличению массы и габаритов деталей, что экономически невыгодно и в ряде случаев (например, в авиационных конструкциях) недопустимо.

При назначении запаса прочности принимают во внимание

свойства материала, назначение и условия эксплуатации конструкции, серьёзность тех последствий, которые могут возникнуть при её выходе из строя.

Расчётная практика и опыт эксплуатации конструкций различного назначения даёт некоторые рекомендации о значениях коэффициента запаса. Для конструкционных пластичных материалов общего машиностроения коэффициент запаса назначается в пределах

.

Для хрупких материалов (закалённые сталей, чугуны) он примерно в два раза больше, чем для пластичных материалов.

Для весьма неоднородных хрупких материалов (камень, бетон, кирпич, дерево) даже в четыре - пять раз больше. Это является достаточно очевидным, поскольку эти материалы более чувствительны к различным повреждениям и дефектам. К тому же случайное повышение напряжений до предельного значения вызовет в пластичном материале только небольшие остаточные деформации, для хрупкого материала это будет разрушение.

Изучение вопросов о выборе коэффициента запаса входит как составная часть в такие дисциплины, как прикладная механика, строительная механика, прочность самолёта, корабля и др. конструкций.

При поверочных расчётах, когда размеры элементов конструкции известны или назначены из соображений эксплуатационных или технологических, вычисляется фактический коэффициент запаса

.

По полученному значению принимается заключение о работоспособности детали, конструкции.

Лабораторная работа № 3

ИСПЫТАНИЕ НА СЖАТИЕ

Цель: 1) определить механические характеристики материалов.

2) назначить допускаемые напряжения.

I. Теория.

В теоретическом представлении поведение материалов при сжатии не отличается от их поведения при растяжения, однако, сравнение соответствующих экспериментальных диаграмм деформирования показывает их некоторое различие. У пластичных материалов оно наблюдается, в основном, после упругого деформирования (рис.3.1).

Для сжатия образец помещается между плитами пресса, которые, сближаясь, деформируют его. Укорачиваясь, образец расширяется в поперечных направлениях.


Если в процессе растяжения образцов некоторых пластичных материалов может наблюдаться площадка текучести, то при сжатии она практически отсутствует, так как площадь поперечного сечения образца увеличивается (при растяжении она уменьшается) и для поддержания текучести необходима возрастающая нагрузка. По этой же причине невозможно образец довести до разрушения, происходит сплющивание. Наблюдаемые изменения формы образца (бочкообразность) обусловлены трением его торцевых поверхностей с поверхностью сжимающих плит. С изменением формы образца напряжённое состояние материала уже не соответствует чистому однородному сжатию. Образец, если позволяет машина, можно превратить в тонкий диск с разрывами на боковой поверхности.

Для получения однородного пластического сжатия образца необходимо исключить трение контактирующих поверхностей. Частично его можно устранить различными твёрдыми смазками (парафин, графит с глицерином, свинцовые прокладки).


Диаграмма сжатия пластичного материала менее информативна, чем диаграмма его растяжения. По ней можно определить: предел пропорциональности, предел текучести (условный) и модуль упругости. Характеристики упругости, определённые по результатам испытаний на растяжение и сжатие, практически одинаковы и принимаются таковыми в соответствующих расчётах. Сопоставление прочности при растяжении и сжатии ведётся по пределу текучести и принято считать

.

О пластичности материала при сжатии можно судить только в сравнении с другими и качественно (более или менее пластичный).

Диаграмма сжатия хрупкого материала (рис.3.2) по своему виду не отличается от диаграммы растяжения и позволяет определить характеристики упругости, прочности, деформируемости: предел пропорциональности, модуль упругости, предел прочности (временное сопротивление), остаточное изменение длины образца (укорочение). Разрушение образцов происходит с образованием трещин по наклонным плоскостям (без смазки торцевых поверхностей) и продольным (при смазке их). Смазка изменяет условия деформирования образцов и для их разрушения требуется большая нагрузка.

Если модуль упругости хрупкого материала при растяжении и сжатии можно определить одним значением, то все другие характеристики различны. Хрупкие материалы оказывают большее сопротивление (более высокая прочность) сжатию, чем растяжению. Сопоставление осуществляется отношением пределов прочности материала при растяжении и сжатии:

.

Для чугунов

, для керамических материалов
.

Хрупкие материалы с волокнистой структурой (дерево и некоторые пластмассы) способны сопротивляться растяжению лучше, чем сжатию.

Если свойства пластичного материала можно полностью определить испытанием только на растяжение, то свойства хрупкого материала только по совокупности результатов испытаний на растяжение и сжатие.

Образцы для испытаний

Форма образцов обычно цилиндрическая, используется и кубическая форма (дерево, бетон). Особенность геометрии образцов – они короткие, так как сжатие длинных (высоких) образцов приводит к их искривлению. Искривление происходит также оттого, что результирующая давления по торцу образца не всегда совпадает с его осью (эксцентриситет).

Отношение высоты образца к поперечному размеру не должно превышает 3.0, так что они, строго говоря, не являются стержнями, и принцип Сен-Венана не позволяет говорить об обеспечении чистого сжатия всего объема материала даже при смазке торцевых поверхностей.

II. Эксперимент

1. Машина для испытаний (указать тип машины).

2. Индикатор часового типа.

3. Штангенциркуль.


Образец устанавливается между плит пресса, одна из которых имеет сферическую опору. Её назначение – обеспечить параллельность сближения плит и равномерность давления по торцам образца.

В процессе эксперимента заполняется отдельно таблица для каждого материала.


Таблица №

При сжатии образца из пластичного материала отсчёт показаний можно прекратить при появлении бочкообразной формы. Количественные оценки процесса деформирования уже не представляют интереса. Дальнейшее деформирование можно продолжить только для удовлетворения любопытства (как сильно образец можно сплющить на этой машине?).

При сжатии образца из хрупкого материала таблица заполняется до момента разрушения. Только для весьма хрупких материалов (керамика, закалённые стали) момент разрушения может быть сразу зафиксирован.

Чтобы избежать рассеяния фрагментов, необходимо образцы закрывать предохраняющим материалом (тканью, сеткой). Это же необходимо делать в целях безопасности, если процесс сжатия осуществляется в машинном режиме. Не разделенный на фрагменты материал ещё способен сопротивляться нагрузкам меньшим

. При образовании заметных трещин на поверхности образца эксперимент можно закончить.

Обработка экспериментальных результатов

По экспериментальным результатам таблицы можно построить графики, как на рис.3.1 и 3.2. Можно построить эти графики в координатах "напряжение – деформация" предварительно вычислив их, заполняя таблицу:

(МПа),
(безразмерная величина)