Смекни!
smekni.com

Методические указания к лабораторной работе по курсу «Монтаж, диагностика и ремонт оборудования» для студентов специальности 170600 всех форм обучения (стр. 1 из 5)

Министерство образования Российской Федерации

Санкт-Петербургский государственный университет
низкотемпературных и пищевых технологий

Кафедра техники пищевых
производств и торговли

СХЕМА И КАРТА СМАЗКИ
ОБОРУДОВАНИЯ

Методические указания
к лабораторной работе по курсу
«Монтаж, диагностика и ремонт оборудования»
для студентов специальности 170600
всех форм обучения

Санкт-Петербург 2002


УДК 637.523.005

Арсеньев В.В., Верболоз Е.И. Схема и карта смазки оборудования: Метод. указания к лабораторной работе по курсу «Монтаж, диагностика и ремонт оборудования» для студентов спец. 170600 всех форм обучения. – СПб.: СПбГУНиПТ, 2002. – 25 с.

Содержится методика выбора смазочных материалов. Рассмотрены вопросы рациональной эксплуатации технологического оборудования пищевых производств. Рекомендованы методы расчета, схемы и карты смазки для основного технологического оборудования.

Рецензент

Доктор техн. наук, проф. В.В. Пеленко

Одобрены к изданию советом факультета техники пищевых производсnв и методической комиссией факультета заочного обучения и экстерната

Ó Санкт-Петербургский государственный

университет низкотемпературных

и пищевых технологий, 2002

1. Цель работы и порядок подготовки к ней

Целью настоящей работы является ознакомление студентов с методикой выбора смазочных материалов и составления карты и схемы смазки технологического оборудования.

Студент обязан за несколько дней до занятий подготовиться к работе по методическим указаниям и соответствующим разделам лекций и рекомендуемой литературе, усвоить цель работы, знать способы смазки трущихся пар, периодичность смазки оборудования и нормы расхода смазочных материалов.

1.1. Общие понятия о трении и износе

При движении одной детали по другой всегда возникает трение. Детали в этом случае называются трущимися парами, а их соприкасающиеся поверхности – трущимися поверхностями.

Под силой трения понимают силу сопротивления, которую нужно преодолеть, чтобы заставить деталь, прижатую с некоторой силой к другой детали, двигаться по её поверхности. Этот вид трения называется трением скольжения.

В том случае, когда шарик или ролик катится по поверхности или детали перекатываются друг по другу, между ними возникает трение качения, которое при одинаковых силах, прижимающих детали друг к другу, меньше трения скольжения примерно в 10 раз.

Одной из главных причин вредного влияния трения при рабочих движениях деталей машин являются неровности, которые всегда имеются на трущихся поверхностях даже при самой тщательной механической обработке.

Средние значения величин этих неровностей для некоторых видов следующие:

– чистовая обработка и расточка твердыми сплавами, чистовое шлифование, шабрение от 2,5 до 6,0 мкм;

– алмазная обточка и расточка, очень чистое шлифование от 1,0 до 2,5 мкм;

– хонингование, полирование, притирка от 0,1 до 1,0 мкм.

В зависимости от наличия и толщины смазочного слоя между трущимися поверхностями согласно теории гидродинамической смазки различают 4 вида трения: сухое, граничное, полужидкостное и жидкостное.

Сухое трение возникает при полном отсутствии смазки и сопровождается интенсивным износом.

Граничное трение возникает у всех поверхностей скольжения при пуске и остановке машины или при ее работе с малым числом оборотов и большой нагрузкой, когда масляная граничная пленка настолько тонка, что течение масла между трущимися поверхностями отсутствует.

Полужидкостное трение создается, когда толщина слоя масла недостаточна или этот слой не образует непрерывной масляной пленки, и в некоторых местах между трущимися поверхностями возникают небольшие островки, где имеет место непосредственное соприкосновение деталей. В условиях полужидкостного трения нагревание и износ деталей несколько меньше, чем при граничном трении.

Жидкостное трение возможно только при наличии нормативного смазочного слоя между трущимися поверхностями, полностью разъединяющего их, когда непосредственное трение металлических поверхностей заменяется внутренним трением слоев смазочного материала. Согласно теории жидкостного трения сила трения внутри смазочного слоя возрастает пропорционально вязкости масла и наоборот.

Потери энергии на трение учитываются коэффициентом трения. Коэффициент трения скольжения выражается отвлеченным числом, а коэффициент трения качения – в сантиметрах.

Трение определяет износ и нагрев трущихся поверхностей, а также их КПД.

Для работы трущихся пар самым благоприятным режимом является режим жидкостного трения.

Граничное и полужидкостное трение сопровождается разрушением граничной пленки смазки и соприкосновением неровностей трущихся поверхностей. Такое зацепление создает большую силу трения, интенсивный износ пар, повышение их температуры. Самым неблагоприятным режимом работы является режим сухого трения.

1.2. Основные сведения о смазочных материалах

Выбор смазочных материалов и условий смазки основывается на расчетах (например, расчет смазки подшипников скольжения) или на экспериментальных данных и опыте эксплуатации (например, выбор смазки для зубчатых передач).

В качестве смазочных материалов используют жидкие нефтяные и синтетические смазочные масла, пластичные (старое название – консистентные) и твердые смазки, а также воду, воздух и другие газы. Наибольшее распространение имеют нефтяные смазочные масла и пластичные смазки. Сырьем для получения нефтяных смазочных масел является мазут, который получают из нефти после отгона светлых продуктов – бензинов и керосинов.

Нефтяные масла разделяют на масла общего назначения – индустриальные и специальные (турбинные, автомобильные, автотракторные, авиационные и др.). Специальные масла отличаются от общих наличием особых свойств, необходимых для соответствующих областей применения.

Важнейшей характеристикой жидких масел, используемой при их подборе, является вязкость. При подборе учитывают также температуру застывания, температуру вспышки, наличие примесей и т. п. Работоспособность смазки зависит и от способности защищать поверхности трения от заедания (схватывание и перенос металлов) и задиров (глубокие и широкие борозды в направлении скольжения).

Для улучшения эксплуатационных свойств смазок применяют различные примеси. Так, для повышения смазочной способности к нефтяным маслам добавляют растительные жиры, жирные кислоты и другие примеси.

Синтетические смазочные жидкости (гликоли, силиколи, фторуглероды и хлоруглероды) применяют при особых условиях эксплуатации, например, при высоких или низких температурах.

Пластичные смазки представляют собой масла, загущенные мылами, парафином или другими веществами. При малых нагрузках эти смазки проявляют свойства твердых тел (сохраняют первоначальную форму и не растекаются), при определенных критических нагрузках – деформируются (текут подобно жидкости), а при снятии нагрузки снова обретают свойства твердых тел.

Пластичные смазки хорошо удерживаются в механизмах и не требуют сложных уплотнений. Наибольшее распространение получили смазки общего назначения – солидолы, жировая 1–13, консталины, а также специальные высокотемпературные ЦИАТИМ-221 и низкотемпературные ЦИАТИМ-201.

Солидолы синтетические (солидол С и пресс-солидол С) и жировые (УС-1, УС-2, УС-3) получают в результате загущения масел кальциевыми мылами жирных кислот. Солидолы водостойки, в их состав входит вода, которая служит стабилизатором структуры.

Консталин (УТ-1,УТ-2) отличается от жировой смазки 1–13 большей температурой применения (до 120 °С).

Твердые смазки ( графит, дисульфид молибдена) применяют в виде порошков или паст при особых условиях эксплуатации – при низких или высоких температурах, глубоком вакууме, в случаях, когда не допускается загрязнение среды жидкими или пластичными смазками. Воду применяют для смазки подшипников скольжения из резины, текстолита или пластифицированной древесины; воздух и газы – для небольших малонагруженных и очень быстроходных подшипников скольжения.

Некоторые параметры, характеризующие свойства масел

Вязкость минеральных масел измеряется в единицах динамической и кинематической вязкости. Динамическая (абсолютная) вязкость выражает собой силы внутреннего трения между слоями жидкостей и газов.

Кинематической вязкостью, или удельным коэффициентом внутреннего трения, называют отношение динамической вязкости к плотности жидкости при одной и той же температуре. Размерность кинематической вязкости в системе СИ и МКС одинаковая – миллиметры квадратные в секунду. Динамическая вязкость применяется при гидродинамических расчетах вязкости масел для смазки трущихся поверхностей, а кинематическая – для расчета прокачиваемости масла по трубопроводам. Динамическую и кинематическую вязкость определяют приборами, называемыми капиллярными вискозиметрами.

С повышением температуры вязкость масел снижается. При повышении температуры минеральных масел общего назначения от 50 до 100 °С их кинематическая вязкость уменьшается в 3–6 раз, а от минус 20 до 20 °С – в 15 раз и более.

Температура вспышки – это та температура, при которой пары масла образуют с окружающим воздухом смесь, воспламеняющуюся при поднесении к ней пламени. Эта температура служит показателем испаряемости и огнеопасности масла.

При сравнении двух видов масел примерно одинаковой вязкости лучшим считается то, которое имеет более высокую температуру вспышки.