Смекни!
smekni.com

Методические указания и контрольные задания для студентов-заочников инженерно-технических специальностей (стр. 17 из 21)

Задача 24. Последовательное соединение нескольких насосов обычно применяют для увеличения напора, когда один насос не может создать требуемого напора, параллельное соединение – для увеличения подачи. В обоих случаях для получения рабочей точки при работе насосов на трубопровод необходимо построить суммарную характеристику насосов и характеристику установки.

Для построения суммарной характеристики насосов в случае параллельного их соединения необходимо сложить характеристики насосов по абсциссам (расходам), так как в этом случае Hн = Н1 = Н2 и Qн = Q1 + Q2. Для построения суммарной характеристики последовательно соединенных насосов необходимо сложить характеристики по ординатам (напорам). В этом случае Hн = Н1 + H2, а Qн = Q1 = Q2.

Для построения характеристики установки следует пользоваться указаниями для задач 22 и 23 вплоть до применения ЭВМ. Пересечение каждой суммарной характеристики насосов с характеристикой потребного напора установки дает рабочую точку для каждого случая соединения насосов. Для получения напора каждого из насосов при их последовательном соединении необходимо опустить перпендикуляр из рабочей точки до пересечения его с характеристиками отдельных насосов. Аналогично получается подача каждого из насосов при их параллельном соединении.

При известных напоре Н, подаче Q, а также к.п.д. h каждого насоса определяют мощность каждого из насосов по формуле (50).

Задача 25. При расчете данной гидравлической передачи расчет рекомендуется провести в следующем порядке.

1. Определяют расход рабочей жидкости за мультипликатором М по формуле

. (51)

2. Расход за гидроцилиндром Ц (пренебрегая объемными потерями) равен расходу, поступающему в цилиндр, т. е. Qс = Qм.

3. Пользуясь приложением 5, по Qн подбирают распределитель с номинальным расходом Qном и номинальными потерями Dрном давления. Рассчитывают действительные потери давления в распределителе

. (52)

4. По известному расходу насоса Qн определяют потери давления на трение Dр1, 2 в гидролиниях 1 и 2.

5. Расчитанные потери давления Dрр в распределителе делят на две части пропорционально протекающему через его каналы расходу: Dр1, 2 и Dр3, 4.

6. Определяют давление перед мультипликатором:

. (53)

и за ним

. (54)

44


7. По расходу Qс определяют потери давления Dр3, 4 в гидролиниях 3 и 4.

8. Аналогично пункту 3 подбирают фильтр и рассчитывают действительные потери давления Dрф в нем.

9. Определяют противодавление Dрсл в гидроцилиндре.

10. Путем составления уравнения (равновесия поршня цилиндра Ц) определяют возможную полезную нагрузку F на шток.

11. Определяют скорость перемещения поршня uп гидроцилиндра и полезную мощность гидроцилиндра:

. (55)

Задача 26. Решение задачи сводится к построению характеристики насоса с предохранительным клапаном (приведенная характеристика насоса) и характеристики потребного давления системы гидропривода, т. е. к определению рабочей точки насоса.

Характеристика объемного насоса строится по номинальным параметрам насоса Qном и рном, а также по объемному к.п.д. насоса ho. Максимальная подача насоса бывает при нулевом давлении и определяется

. (56)

По полученным двум точкам проводят прямую линию.

При возрастании перепада давления на предохранительном клапане Кпр расход через него увеличивается. Так как предохранительный клапан всегда устанавливается параллельно насосу (см. рис. 30), при его частичном открытии часть подачи насоса Qн сливается через него (Qк), а оставшаяся поступает в систему (Qс). Следовательно, Qс = QнQк. Значит, для получения общей характеристики насосной установки необходимо из характеристики насоса графическим путем вычесть характеристику предохранительного клапана. Получается, так называемая приведенная характеристика насоса, которая имеет вид ломаной линии. Такая характеристика задана в условии настоящей задачи.

Характеристика потребного давления системы строится аналогично способу, изложенному в задаче 22. При этом

, (57)

где рст – статическое давление, определяемое полезной нагрузкой F; SDрп – общие потери давления в системе. Рабочую точку дает пересечение приведенной характеристики насоса с характеристикой потребного давления системы.

Задача 27. Задачу рекомендуется решать, придерживаясь следующей последовательности.

1. Определяют необходимую подачу насоса, нагнетаемую в гидромотор:

. (58)

2. По рассчитанной подаче насоса определяют общие потери давления SDрп в системе гидропривода.

3. Определяют перепад давления на гидромоторе по формуле (1).

4. Развиваемое насосом давление определяют как сумму перепада давления на гидромоторе и потерь давления в системе

. (59)

5. Определяют к.п.д. гидропривода как отношение полезной мощности гидромотора к мощности насоса

. (60)

Задача 28. Развиваемое насосом давление и частоту вращения вала гидродвигателя (подача насоса) определяют графоаналитическим способом. Для этой цели необходимо построить характеристику насоса, гидродвигателя, дросселя, а также характеристику гидролиний с распределителем.

1. Порядок построения характеристики насоса указан в методических указаниях к задаче 26

45


2. Перепад давления на гидродвигателе определяют по формуле (46). Характеристика гидродвигателя имеет вид горизонтальной прямой линии, так как развиваемый двигателем момент от подачи насоса не зависит.

3. Расход через дроссель при некоторых значениях давления насоса рассчитывают (пренебрегая потерями давления в сравнительно коротких линиях 6 и 7), используя формулу (18). Эта характеристика имеет вид параболы.

4. При построении характеристики гидролиний с распределителем (зависимость суммарных потерь от расхода) используют расходы, попадающие в систему (Qс = ОнQдр).

5. Обратив внимание на то, что гидролинии с распределителем по отношению к гидродвигателю подсоединены последовательно, а дроссель – параллельно, графически строят характеристику потребного давления системы. Пересечение характеристик насоса и потребного давления системы дает рабочую точку насоса.

6. По рабочей точке графически определяют развиваемое насосом давление и подачу, а также расход, протекающий через дроссель.

7. Определяют частоту вращения вала гидродвигателя, используя формулу (58).

ПРИЛОЖЕНИЯ

1. Средние значения плотности r
и кинематической вязкости
n некоторых жидкостей

Жидкость

Плотность

кг/м3, при Т, °С

Кинематическая вязкость, Ст, при Т, °С

20

50

20

40

60

80

Вода

998

0,010

0,0065

0,0047

0,0036

Нефть, легкая

884

0,25

Нефть, тяжелая

924

1,4

Бензин

745

0,0073

0,0059

0,0049

Керосин Т-1

808

0,025

0,018

0,012

0,010

Керосин Т-2

819

0,010

Дизтопливо

846

0,28

0,12

Глицерин

1245

9,7

3,3

0,88

0,38

Ртуть

13550

0,0016

0,0014

0,0010

Масла:
касторовое

960

15

3,5

0,88

0,25

трансформаторное

884

880

0,28

0,13

0,078

0,048

АМГ-10

850

0,17

0,11

0,085

0,65

веретенное АУ

892

0,48

0,19

0,098

0,059

индустриальное 12

883

0,48

0,19

0,098

0,59

индустриальное 20

891

0,85

0,33

0,14

0,080

индустриальное 30

901

1,8

0,56

0,21

0,11

индустриальное 50

910

5,3

1,1

0,38

0,16

турбинное

900

0,97

0,38

0,16

0,088

Указание. Плотность жидкости при другой температуре можно определить по формуле rт = rо/(1 + a×DТ), где rт – плотность жидкости при температуре Т = То + DТ; DТ – изменение температуры; То – температура, при