Смекни!
smekni.com

Методические указания к курсу физика атомного ядра и частиц для студентов физического факультета (стр. 3 из 7)

или

.

Масса (энергия) исходного ядра должна быть больше суммы масс (энергий) ядра-продукта и α-частицы. Избыток энергии исходного ядра выделяется при α-распаде ядра в виде кинетической энергии. Подавляющую часть кинетической энергии, вы­деляющейся при α-распаде, уносит α-частица, и лишь незначи­тельная ее доля (~2% для тяжелых α-радиоактивных ядер) приходится на ядро-продукт.

Энергетическое рассмотрение α-распада позволило объяснить целый ряд экспериментальных закономерностей этого процесса. Непонятной осталась только природа закона Гейгера — Нэттола, который никак не следует из энергетической схемы α-распада. Согласно энергетической схеме, α-распад становится возмож­ным в том случае, когда εα < 0, т.е. когда энергия исходного ядра больше суммы энергий ядра-продукта и α-частицы. Но если это так, то почему α-распад не происходит мгновенно (т. е. за время τ = R/v, где R - радиус ядра, а v - скорость α-частицы)?

Дело в том, что потенциальная энергия α-частицы при r = R имеет максимум, который называется кулоновским потенциальным барьером. Поэтому нет ничего удивительного в том, что α-распад происходит не мгновенно. Объяснение природы α-распада заключается именно в этом, неправдоподобном с точки зрения классической физики, эффекте преодо­ления потенциального барьера. В мире ми­крочастиц (электронов, нуклонов, α-частиц), движение которых описывается не классической, а квантовой механикой, возможен процесс так называемого туннельного перехода - прохожде­ния частицы через потенциальный барьер. Соответствующая задача решается в квантовой механике (Гамов, 1928). Решение получается в виде выражения для коэффициента прозрачности барьера D. Величина коэффициента прозрачности потенциального барьера D имеет физический смысл вероятности для α-частицы пройти через потенциальный барьер.

Возникающие альфа-частицы взаимодействуют с веществом посредством упругого рассеяния и ионизационного торможения. При упругом рассеянии суммарная кинетическая энергия частиц сохраняется и перераспределяется между ними. Вследствие большой массы (Мα = 7350 me, me – масса электрона ) альфа - частицы почти не рассеиваются на электронах среды (а только на ядрах), продолжая двигаться прямолинейно (Рис. 1.).

Кулоновское поле электронов атомов вещества взаимодействует с движущейся α - частицей, которая при этом теряет энергию, постепенно останавливаясь. Это процесс ионизационного торможения. Характерной особенностью альфа-частиц является существование у них определенного пробега R -расстояния, которое проходит частица до момента полной потери энергии. Точные расчеты удельных ионизационных потерь энергии для релятивистских заряженных частиц дают следующий результат (формула Бете – Блоха):

,

где

и
заряд налетающей частицы и ядра, соответственно,
- средний ионизационный потенциал атомов вещества среды, через которую проходит частица,
эВ,
,
,
- концентрация атомов вещества.

Таким образом, удельные потери энергии пропорциональны числу электронов вещества и квадрату заряда частицы теряющей энергию на ионизацию. Удельные потери энергии не зависят от массы проходящей через вещество частицы, но существенно зависят от скорости частицы. Например, мюоны гораздо тяжелее электронов, поэтому при той же энергии они теряют ее медленнее, чем электроны и проходят сквозь большие слои вещества без существенного замедления. Удельные потери энергии возрастают с уменьшением энергии частицы и особенно резко перед ее остановкой в веществе (так называемый пик Брэгга).

Для определенной среды и частицы с данным зарядом

величина
является функцией только кинетической энергии. Учитывая этот факт, можно вычислить полный пробег частицы, то есть путь
, который заряженная частица проходит до остановки и полной потери кинетической энергии:

. (14)

Тяжелые заряженные частицы взаимодействуют в основном с атомными электронами и поэтому мало отклоняются от направления своего первоначального движения. Вследствие этого пробег тяжелой частицы

измеряют расстоянием по прямой линии от точки входа частиц в вещество до точки их остановки. Обычно пробег измеряется в единицах длины или длины, умноженной на плотность (г/см2).

Таким образом, потеря энергии на ионизацию пропорциональна массовой толщине поглотителя и не зависит от его природы :

.

Если исследовать монохроматический поток α-частиц и подсчитывать число частиц, увеличивая постепенно расстояние между источником и детектором, то есть заставляя альфа-частицы проходить все больший слой воздуха, то число N частиц в пучке начинает на определенном расстоянии падать не сразу до ноля, а с некоторым наклоном (кривая 1 на Рис.2.).

Если эту кривую продифференцировать и построить величину dN/dx в зависимости от толщины слоя x , то получится кривая 2 (Рис.2.) с резким максимумом при x=R0 , показывающим, что подавляющее большинство α-частиц имеет определенный пробег с некоторым разбросом в ту и другую сторону. В диапазоне энергий 4 < Eα < 15 Мэв используют для оценки Eα зависимость:

Для Еα<4 МэВ связь между пробегом и энергией частицы представлена в виде номограммы (рис 3), при помощи которой по пробегу частицы можно найти ее энергию, и наоборот. Иногда для оценки Eα используют Rэ - экстраполированный пробег, полученный путем продолжения наклонной линии 1 до пересечения с осью абсцисс.

Для построения кривой N(x) необходимо внести поправку на телесный угол с учетом реальных размеров окон детектора и источника, так как в детектор попадает лишь часть излучения.

Увеличение расстояния уменьшает телесный угол, в котором счетчик "видит" испускаемые частицы, и приводит к уменьшению регистрируемых частиц. Для получения полного числа частиц надо зарегистрированное число частиц поделить на поправку, взятую из таблицы:

x/r0 0.1 0.2 0.4 0.5 0.6 0.8 1.0 1.25 1.5
Поправка 0.286 0.253 0.197 0.175 0.158 0.127 0.102 0.080 0.062

где x - расстояние между окном детектора и α -препаратом, r0 - радиус окошка детектора.

Приборы и оборудование.

Общий вид установки приведен на Рис.4. Установка состоит из двух блоков - электронного блока управления и индикации (БУИ) и блока детектирования, соединенных между собой кабелем.

Блок детектирования содержит источник и счетчик α-частиц, высоковольтный выпрямитель для питания счетчика. Расстояние между источником и счетчиком измеряется по шкале на скамье, по которой перемещается источник.

Электронный блок установки содержит таймер, максимальный измеряемый интервал времени которого tmax = 999 с, и блок пересчета импульсов.

Рис. 4

В электронном блоке имеются следующие кнопки управления:

· “Сеть” (на задней панели прибора) включает питание счетчиков 220в.

· “Пуск” включает таймер и отсчет измеряемых импульсов.

· “Стоп” одновременная их остановка.

· “Сброс” обнуляет их показания.

· “Время” устанавливает необходимое время измерения.

· На табло измерительного блока индикатор “Кол. частиц” показывает число зарегистрированных частиц, а индикатор “сек” показывает время измерения.

Порядок выполнения работы