Смекни!
smekni.com

Методические указания к лабораторным работам «спектральный анализ» (стр. 1 из 7)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ЛАБОРАТОРНЫМ РАБОТАМ «СПЕКТРАЛЬНЫЙ АНАЛИЗ» ПО СПЕЦКУРСУ «ОПТИЧЕСКИЕ МЕТОДЫ АНАЛИЗА» ДЛЯ СТУДЕНТОВ 4 КУРСА ХИМИЧЕСКОГО ФАКУЛЬТЕТА. СПЕЦИАЛЬНОСТЬ «ХИМИЯ»

ЕКАТЕРИНБУРГ 2005
Методические указания подготовлены кафедрой аналитической химии

Составитель:

Буянова Е.С.

Уральский государственный университет

2005

От составителя

При изучении специального курса «Оптические методы анализа» студенты осваивают наиболее распространенные методы качественного и количественного эмиссионного спектрального анализа, спектрофотометрического анализа. В настоящих методических указаниях описаны лабораторные работы, выполнение которых позволяет студентам получить определенные навыки в проведении точного аналитического эксперимента и обработке экспериментальных данных. В руководстве описана необходимая аппаратура, используемая при различных измерениях, правила ее эксплуатации и порядок измерений. Описанию лабораторных методик предшествует краткое изложение теоретических основ метода, облегчающее выполнение конкретных аналитических задач. Методические указания разделены на две части: спектральный анализ и спектрофотометрический анализ.

Выполняя практические работы, студент должен выполнять следующие правила:

1. Ознакомиться с инструкцией по технике безопасности при работе в лаборатории

2. Ознакомиться с описанием конкретной работы, уяснить цель работы и методику ее выполнения.

3. Ознакомиться с описанием прибора, на котором выполняется работа и методикой измерений на нем.

4. Приготовить в строгом соответствии с методикой необходимые приборы, материалы, реактивы и посуду.

5. Получить у преподавателя или дежурного лаборанта разрешение на включение прибора.

6. Получить у преподавателя или дежурного лаборанта контрольную задачу и необходимые материалы.

7. По окончании работы выключить прибор, привести в порядок и сдать рабочее место лаборанту.

8. Оформить и сдать преподавателю отчет о проделанной работе.

Краткая теория

Эмиссионным, или атомным, спектральным анализом называют метод исследования элементного (качественного и количественного) состава вещества по спектру излучения его атомов.

Спектры излучения атомов наблюдают на специальных оптических приборах, помещая исследуемые пробы в такие источники энергии, как газовое пламя, электрическая дуга постоянного или переменного тока, высоковольтная искра и т. п. При этом происходит испарение и диссоциация исследуемых веществ на атомы и ионы, которые возбуждаются и дают спектры испускания (эмиссионный спектр). Испускание света атомами происходит за счет изменения их энергии. В невозбужденном, т. е. нормальном состоянии атомы обладают минимальной энергией Е0. При подведении энергии, например, при столкновении с быстролетящими электронами, энергия которых достаточна для возбуждения, атомы возбуждаются, т. е. переходят на более высокий энергетический уровень.

Через очень короткое время (~ 10-8 с) атом самопроизвольно возвращается в нормальное или какое-то более низкое возбужденное состояние. Освобождающаяся при этом энергия ∆Е излучается в виде светового кванта ∆Е = h ∙ ν (1), где h – постоянная Планка.

Частота излучения (n, с-1 ) будет определяться соотношением:

(2),

Где ЕА* и ЕА - энергия атома в возбужденном и нормальном состояниях. Или, характеризуя излучение волновым числом (n, см-1),

(3) ,

где с – скорость света. Совокупность излучаемых частот связана с энергетическими состояниями атома.

Свет, излучаемый атомами, при помощи спектрального прибора разлагается в эмиссионный спектр, состоящий из набора отдельных спектральных линий (линейчатый спектр). По характерным линиям в спектре можно идентифицировать элементы, содержащиеся в анализируемом веществе (качественный спектральный анализ), а по относительным интенсивностям спектральных линий определять концентрацию элемента в исследуемом образце (количественный анализ).

Основные узлы спектральных приборов. Каждый спектральный прибор имеет следующие основные узлы: источник возбуждения, диспергирующий элемент, регистрирующее устройство. Кроме этого, в любом спектральном приборе есть оптическая система, предназначенная для получения параллельного пучка света, его фокусировки, изменения хода лучей и т. д.

Источники возбуждения. Источники возбуждения переводят пробу из конденсированной фазы в парообразную, и возбуждают вещество в парообразной фазе. В большинстве источников возбуждения эти функции совмещаются. При спектральном анализе газов необходимость в первой операции отпадает. Возбуждение атомов происходит главным образом при столкновении с быстролетящими частицами, чаще всего электронами.

Источник возбуждения должен обеспечивать необходимую яркость спектра и быть достаточно стабильным. Наибольшее применение в качестве источников возбуждения получили пламя, электрическая дуга и искра.

Пламя дает достаточно яркий и стабильный спектр. Возбуждение спектров в пламени носит в основном термический характер. В пламени обычной газовой горелки температура составляет 1200 K. Смесь ацетилена с воздухом дает 2500 K, ацетилена с кислородом – около 3300 K. С помощью пламенных источников определяют 20 – 25 элементов (Mg, Cu, Mn, Tl, щелочные, щелочноземельные металлы и т. д.). Некоторая ограниченность пламени как источника возбуждения нередко становится его достоинством, так как в пламени не возбуждаются так называемые трудновозбудимые элементы и общая картина спектра проще, чем при возбуждении в дуге или искре.

Электрическая дуга постоянного тока – это разряд при сравнительно большой силе тока (5 – 7 А) и небольшом напряжении (50 – 80 В). Разряд пропускают между электродами из анализируемого образца или между образцом и электродом, не содержащим определяемых элементов. Температура дуги составляет 5000 – 7000 K, что обеспечивает возбуждение большинства элементов. Широко применяется также дуга переменного тока, основные характеристики которой подобны. Сравнительно малая воспроизводимость условий возбуждения в дуге ограничивает применение дуговых спектров в основном качественным или полуколичественным анализом. Существенным недостатком дуги является также значительное разрушение анализируемого образца.

В плазме искрового разряда развивается температура 7000 – 10000 K и происходит возбуждение практически всех элементов. В случае необходимости температура искры может быть повышена до 12000 K и выше. Основное достоинство искры составляют высокая стабильность условий разряда и, следовательно, стабильность условий возбуждения, столь необходимая в количественном анализе. Работа с искрой практически не вызывает разрушения образца, что выгодно отличает искру от дуги.

Диспергирующий элемент. Диспергирующий элемент разлагает излучение в спектр. Это наиболее важная часть спектрального прибора, в значительной степени определяющая его аналитические возможности. В качестве диспергирующего элемента используются призмы, дифракционные решетки и интерференционные устройства. Наибольшее распространение получили призменные и дифракционные спектральные приборы.

Призмы изготовляют из стекла или кварца, так как эти материалы достаточно прозрачны в широкой области длин волн. Стеклянные призмы дешевле кварцевых и имеют более высокую угловую дисперсию, поэтому для работы в видимом и ближнем инфракрасном участках спектра обычно применяют стеклянные призмы. Для исследования ультрафиолетовой области спектра применяется кварц.

Дифракционные решетки в качестве диспергирующего элемента имеют существенные достоинства. Дисперсия света в дифракционной решетке не зависит от длины волны. Разрешающая способность решетки в длинноволновой области значительно выше, чем у призмы. Спектральный интервал, доступный для исследования, достаточно широк (от 200 до 1000 нм).

Регистрируюшие устройства (приемники света). В качестве приемников света используют глаз, фотопластинки и фотоэлементы.

Человеческий глаз. Возможности глаза как измерительного прибора весьма ограничены, так как глаз чувствителен к свету в области спектра примерно от 400 до 700 нм. Разность или отношение световых потоков глаз оценивает очень приближенно. С достаточной точностью он устанавливает лишь равенство интенсивностей световых потоков одного цвета. На этом свойстве глаза основаны все приемы визуальной фотометрии.

Фотопластинка. Действие света на

фотопластинку характеризуется экспозицией, или количеством освещения H, которое приближенно определяется формулой H = Et p (4), где E – освещенность, t время освещения, p – постоянная Шварцшильда, принимающая значения от 0.7 до 0.95. Под действием света на фотопластинке образуется скрытое изображение, которое проявляют, а затем закрепляют (фиксируют).

Мерой фотографического воздействия света на фотоэмульсию служит величина почернения, которая определяется следующим образом. Пусть на проявленную и закрепленную пластинку падает свет интенсивностью I0. Если I и I0 – интенсивность света, прошедшего соответственно через затемненный, засвеченный участок фотопластинки и через незасвеченный, то почернение S равно:

(5). Зависимость почернения от количества освещения изображается характеристической кривой фотопластинки (рис.1).