Смекни!
smekni.com

Методические указания к курсовой работе по курсу «статистика» для студентов, обучающихся по специальности 080502 (060800) экономика и управление (стр. 6 из 10)

Задача 4

Имеются следующие данные, характеризующие динамику производства валового выпуска продукции предприятия по месяцам. Требуется произвести сглаживание ряда, применяя трехмесячную скользящую среднюю.

Месяц

Валовой выпуск продукции, млн.руб.

Скользящая сумма из трех членов

Скользящая средняя из трех членов

Январь

63

-

-

Февраль

93

63+93+102=258

253:3=86

Март

102

93+102+117=312

312:3=104

Апрель

117

102+117+126=345

345:3=115

Май

126

117+126+117=360

360:3=120

Июль

117

-

-

Задача 5

Имеются следующие данные о численности населения города за 5 лет (на начало года):

Год

1

2

3

4

5

Численность населения, тыс.чел.

72

78

83

87

90

Найти линию тренда, используя полученное уравнение, определить численность населения в 8 году (прогноз).

Решение:

1 метод

Предположив, что численность населения изменяется во времени по прямой

, для нахождения параметров
и
решаем систему нормальных уравнений, отвечающих требованиям способа наименьших квадратов:

.

Далее в таблице 4.4 рассчитаны необходимые для решения системы уравнения суммы. Годы последовательно обозначены, как 1, 2, 3, 4, 5 (n = 5).

Таблица 4.4 –Выравнивание рядов динамики

Год

Численность населения, тыс. чел.

Условное обозначение времени

А

1

2

3

4

5

1

72

1

1

72

73

2

78

2

4

156

77,5

3

83

3

9

249

82

4

87

4

16

348

86,5

5

90

5

25

450

91

n = 5

Подставляя полученные суммы в систему уравнений

, получаем b0= 4,5; b1= 68,5.

Отсюда исходное уравнение тренда:

.

Подставляя в это уравнение значения t: 1, 2, 3, 4, 5, находим выравненные (теоретические) значения yt (графа 5).

Для 8 года t = 8. Следовательно, по прогнозу численность населения города в 8 году составит:

68,5 + 4,5 * 8 = 104,5 (тыс.чел.).

2 метод

Для решения данной задачи можно использовать и второй метод, упрощенный.

Если время (t) обозначить так, чтобы t = 0 (т.е. счет вести от середины ряда), то система упростится и примет вид:

Каждое уравнение в этом случае решается самостоятельно:

Необходимые для расчета b0 и b1 суммы приведены ниже в таблице 4.5.

Таблица 4.5 – Выравнивание рядов динамики

Год

Численность населения, тыс. чел.

Условное обозначение времени

t

А

1

2

3

4

5

1

72

-2

4

-144

73,0

2

78

-1

1

-78

77,5

3

83

0

0

0

82,0

4

87

1

1

87

86,5

5

90

2

1

180

91,0

n = 5

Получаем:

отсюда уравнение прямой для выравненных уровней:

(линия тренда)

Выравненные значения:

для 1 года

.

для 2 года

.

для 3 года

.

для 4 года

.

для 5 года

.

Численность населения в 8 году (t = 5) находим по формуле: