Запас нужных аминокислот должен постоянно пополняться. Со дня рождения и до самой смерти мы, таким образом, должны постоянно получать необходимые белки из продуктов питания. «Правильность» метаболизованных протеинов и правильность самого процесса интенсивности белкового обмена можно исследовать, например, определяя содержание азота в моче, которое обычно находится в полном соответствии с эффективностью восстановительных процессов, идущих в тканях. Правильное функционирование организма в значительной степени зависит от усвоенных аминокислот. Печень, например, может создавать их небольшие запасы, если в процессе переваривания белков они не будут сразу и полностью израсходованы. Однако, в случае недостаточного количества или несоответствующего качества употребленного в пищу белка запас кислот мгновенно исчерпывается, и начинается процесс регрессии некоторых тканей. Белки, из которых эти ткани состоят, как бы «принося себя в жертву», распадаются на аминокислоты, для того чтобы обеспечить процесс восстановления ткани, наиболее приоритетной для организма.
Такая ситуация может длиться многие годы и даже не проявляться никакими видимыми болезненными признаками, однако постепенно функции организма ослабевают, поскольку постоянно растет дефицит белков в крови, коллагена в соединительной ткани, а также дефицит гормонов, энзимов и антител. Тем самым деятельность организма систематически нарушается. Мышцы теряют упругость, кости изрешечиваются, волосы выпадают, кожа морщится, зрение слабеет и т.д. Старение клеток становится все более заметным.
Белковая недостаточность в пище приводит к:
- замедлению роста и развития молодого организма
- гипохромному малокровию
- дегенеративным изменениям печени, ее ожирению, очагам некроза, атрофии ткани и, наконец, к циррозу
- снижению сопротивляемости всего организма
- ухудшению регенерации поврежденных тканей
- изъязвлению слизистых оболочек и пищевода
- у маленьких детей к синдрому Квашиоркор – общему истощению.
Белковая недостаточность в организме появляется отнюдь не только в результате физической нехватки питания: все же в нашей части мира голода нет. Кроме индивидуальных случаев, когда человека морят голодом, вопреки его воле, кроме случаев анорексии, а также неразумно применяемых диет, (например, веганской диеты) и все более частых, к сожалению, случаев воздержания от употребления в пищу белков из-за аллергий и подобных недомоганий, мы имеем дело со следующими эндогенными причинами дефицита протеинов:
- нарушение функции пищеварения или усвоения;
- неполноценное производство протеина в организме вследствие различных заболеваний;
- гипертрофированный распад белков (например, при хронических состояниях повышенной температуры);
- потеря белков в результате нефрита, экссудата, нагноений и кровотечений;
- гликация протеина, например, при сахарном диабете;
- повышенная потребность в белке, например, при острой дисфункции щитовидной железы.
Хотя многие врачи и сомневаются в размерах разрушений протеиновых запасов в результате вышеназванных причин, факты таковы: до 150 г. белка ежедневно (!) может терять организм при большом нагноении; 1,5 кг белка мы теряем в результате обычного перелома кости голени (это соответствует 7,5 кг потери мышечной ткани). В результате плохого питания потери могут быть настолько велики, что их невозможно восстановить без значительного урона для организма.
Если, однако, мы дадим организму больше белков, чем ему необходимо, то после создания в печени аминокислотного резерва, оставшийся протеин будет переработан в глюкозу и жиры. Азот, полученный в результате этих процессов, удаляется с мочой, но жиры и сахар, которые не были энергетически употреблены немедленно – ведут к приросту излишней жировой ткани. Это, однако, ситуация более редкая, чем, например, ожирение, вызванное избытком углеводов и жиров. Усиленная поставка белков в организм возбуждает также нервную систему, что приводит, между прочим, к возникновению неврозов.
И все же, вопреки распространенным стереотипам, мы не нашли в мировой литературе никаких публикаций из области пищевой биохимии и физиологии, ни одного клинического описания, которое доказывало бы вред избытка протеинов у людей абсолютно здоровых. Нам также не известен лично ни один врач, который в своей практике встретился бы с явлением «перенасыщенности» организма белками. А следует добавить, что у нас есть друзья среди специалистов спортивной медицины высшего мирового уровня, подопечные которых 12 и более лет принимали до 400 г протеинов в день (!) и после окончания спортивной карьеры остаются людьми с железным здоровьем. Мы знаем также десяток врачей, которые проработали по 40 лет среди пациентов из северных районов России, где люди питаются в основном протеинами. Эти медики дружно утверждают, что, действительно, средняя продолжительность жизни чукчей и эвенков драматически ниже, чем у популяции, питающейся более структурировано. Но это происходит вовсе не потому, что эти народности питаются в основном одними белками, а потому, что они упорно придерживаются этой диеты, и тогда, когда их организм уже болен по совершенно иным причинам.
В 80-е и 90-е годы много говорилось о «перенасыщенности белками» домашних животных, в основном собак. Эти споры в литературе сразу же утихли, как только оказалось, что вовсе не избыток белка, а недостаток витамина В6 привел к описываемым заболеваниям.
Подобным же образом исследования Землянского (2001 г), которые легли в основу диетических гипотез о «перенасыщенности белками», оказались ошибочными из-за того, что у исследуемой группы был не учтен фактор дефицита цинка, калия, меди и витамина В6. Не следует пугать избытком белка молодых людей с прекрасным обменом веществ. На основе анализа способности организма к синтезу и удалению из организма мочевины Итон и Коннер (1985) доказали, что двух и трехкратное превышение норм (достаточно разных – от 30 до 60 г в сутки) не влияет никаким отрицательным образом на молодой – подчеркиваем это – и здоровый организм.
Разумеется, существует огромное количество причин для ограничения употребления протеинов, но все они, как одна, связаны с дисфункцией какого-либо органа или системы. Отдельной темой стоит вопрос имеет ли биологический смысл объедаться протеинами тем лицам, которые не используют их ни анаболически ни энергетически. Здесь мы отвечает просто и честно: не имеет смысла. Более того, могут образоваться питательные навыки, от которых впоследствии, когда закончится беззаботная молодость и здоровье начнет ухудшаться, «мясоеду» будет очень трудно отказаться.
Белковое хозяйство – это хозяйство аминокислотное.
Весьма существенно то, что из 19-21 аминокислот, участвующих в создании протеина, восемь не синтезируются в организме.
Это:
- триптофан
- лизин
- метионин
- фенилаланин
- треонин
- валин
- леуцин
- изолеуцин
Итак – это аминокислоты незаменимые. Они экзогенны, что означает: организм сам их не произведет, чем бы его ни кормили, если в пище нет этих биохимических соединений! Именно этот конкретный материал для строительства белка организм должен получить извне. И хотя в биохимии не всегда 2х2=4, то в случае белковых молекул, возникающих в процессе метаболизма из экзогенных аминокислот, более или менее, так дело и обстоит.
Три человеческих аминокислоты: цистин, гидроксилизин и гидроксипролин, естественно выступающие в белках, возникают лишь после трансляций и в модифицированных формах.
Оригинальная аминокислота, какой является гидроксилизин, появляющийся в ходе гидроксиляции лизина практически не выступает в чистом, готовом для усвоения виде ни в одном продукте питания. (Это очень важно для данной работы, потому что именно такой гидроксилизин мы находим в лиофилизате гидратированного коллагена из рыбьей кожи в составе капсул COLVITA, о чем речь пойдет далее. Рыбий коллаген содержит также не выступающие в таком количестве ни в одном исследованном продукте питания аминокислоты гистидин и аргинин – незаменимые для детей и подростков, довольно часто являющиеся дефицитными в детском организме, - а также большое количество гидроксипролина – аминокислоты оригинальной и неизмеримо важной для процесса коллагеногенеза).
Такие аминокислоты, как: глицин, аланин, глютамин, глютаминовая кислота, пролин, серин, аспарагин, аспарагиновая кислота, тирозин, цистеин могут принимать участие в синтезе. Здесь, однако, следует обратить внимание на аминокислоту производную, какой является гидроксипролин – продукт гидроксиляции пролина. Гидроксипролин тоже принимает участие в синтезе, но «иначе». Дело в том, что гидроксипролин одновременно процесс синтеза как бы обуславливает. Мы говорим здесь о биосинтезе коллагена, поскольку эта аминокислота выступает исключительно в коллагене и почти нигде больше в человеческом организме.
Измерением количества гидроксипролина в исследуемом белковом материале довольно точно определяется содержание в нем коллагена. Это очень ценная аминокислота, особенно, если учитывать ее роль в процессе синтеза собственного коллагена в организме. Исследуя польский рыбий коллаген, сначала в виде косметического гидрата, а затем лиофилизата для суплементации, мы обнаружили, что он содержит гидроксипролин, непосредственно усваиваемый из пищеварительной системы, в количествах, которые не имеют места ни в одном натуральном пищевом продукте, ни в одном, производимом в настоящее время препарате, ни в одном суплементе.
Жизнь начинается с аминокислот. Стоит только представить себе, что из 20 аминокислот организм может построить теоретически любую конфигурацию цепочек, например, длиной в 100 аминокислот. И тут окажется, что мы можем получить 20¹ºº комбинаций различных цепочек, каждая из которых будет отличаться от остальных по крайней мере в одном месте… Это невообразимое число. Достаточно сказать, что количество всех атомов в космосе оценивается в 20 в 80-й степени.