Смекни!
smekni.com

Курсовой работы «Основные виды и стандарты линий связи для компьютерных сетей». Объем работы составляет 41 лис, количество рисунков 10, количество используемых источников 8 (стр. 3 из 7)

· установка - необходимость применения специальных разъемов делает установку SТР более труд­ной, чем UТР. Разъемы должны заземляться. Для упрощения следует использовать стандартизи­рованные кабели. Поскольку SТР — жесткий и толстый кабель, работать с ним довольно трудно;

· пропускная способность - поскольку экранирование уменьшает влияние внешних помех, тео­ретически SТР позволяет передавать 500 Мбит/с на расстояние 100 м. Между тем лишь в не­многих инсталляциях скорость передачи данных превышает 155 Мбит/с. В настоящее время в большинстве сетей SТР данные передаются со скоростью 16 Мбит/с;

· число узлов - поскольку кабелем SТР можно соединить только два компьютера, число узлов в сети SТР ограничивает концентратором. В сети Token Ring полезный верхний предел составляет 200 узлов на одно кольцо, но он зависит от тра­фика в сети. Согласно спецификации верхний предел составляет 270 узлов;

· затухание - стандартное огра­ничение составляет 100 метров;

· электромагнитные помехи - самая существенная разница между SТР и UГР состоит в умень­шении влияния ЕМI. Экранирование в значительной степени блокирует помехи, однако, как любой медный кабель, SТР все равно остается подверженным ЕМI и перехвату информации.

2.2 Коаксиальный кабель

Коаксиальный кабель имеет два проводника с общей центральной осью. В центре такого кабеля про­ходит сплошной медный проводник или многожильный провод. Он заключен в пластиковый вспенен­ный изолированный слой. Такой же изолирующий слой покрывает второй проводник — цилиндрическую оплетку, металлическую фольгу или то и другое. Оплетка предохраняет провод от электромагнитных помех. Ее часто называют экраном. Внешний слой такого кабеля образует жесткая пластмассовая оболочка, обеспечивающая защиту и изоляцию (рис. 4).

1- центральный проводник; 2- изолятор; 3- проводник - экран; 4- внешний изолятор.

Рисунок 4 – Коаксиальный кабель

Наибольшее применение имеют кабели среднего (2,6/9,5мм) и малогабаритного (1,2/4,6мм) типов. В ряде случаев используют комбинированные конструкции кабелей, состоящие из 4, 6, 8 коаксиальных пар среднего типа и 4, 6 малогабаритных пар. Средние коаксиальные пары предназначены для организации многоканальной связи и телевидения на большие расстояния между оконечными пунктами и крупными узлами связи. Малогабаритные коаксиальные кабели предназначены для строительства кабельных магистралей ограниченной протяженности, рокадных линий между магистралями, устройства глубоких вводов радиорелейных линий и обеспечения областных связей. Достоинствами этих кабелей являются простота конструкции, дешевизна и технологичность их изготовления.

Большие коаксиальные пары представляют собой, как правило, одну пару большого размера (7/27мм 11/40мм и др.). Они используются по двухкабельной системе и предназначаются для организации большого числа каналов на главных направлениях связи.

Сети на коаксиальном кабеле создаются путем объединения Т-образных секций в один длинный сегмент. Два свободных конца сегмента завершаются терминаторами (рис. 5). ПК подключаются к одному из концов Т-образной секции. Данные передаются вдоль всего сегмента и достигают всех устройств, входящих в сегмент (рис. 6).

Рисунок 5 – Терминатор и Т-коннектор

Рисунок 6 – Соединение компьютеров с помощью коаксиального кабеля

Для того чтобы сеть функционировала, весь сегмент должен оставаться неповрежденным. Это означает, что, если какая-нибудь секция кабеля повреждена или отключена, то сеть работать не будет. В процессе модернизации сети (например, путем добавления новых ПК) происходит разрыв сегмента, что делает сеть временно неработоспособной. Коаксиальный кабель может использоваться только для сетей стандарта Ethernet.

Коаксиальный кабель имеет следующие характеристики:

· стоимость - коаксиальный кабель относительно недорог. Стоимость тонкого коаксиального ка­беля меньше, чем SТР или UTР категории 5. Толстый коаксиальный кабель дороже SТР или UTР категории 5, но дешевле волоконно-оптического кабеля;

· установка - после небольшой практики подключение разъемов становит­ся несложным, а сам кабель устойчив к различным повреждениям. Коаксиальный кабель требует наличия оконечной нагрузки и заземления. Заземление завершает электри­ческую цепь;

· пропускная способность - типичная скорость передачи данных для современной коаксиальной сети составляет 10 Мбит/с;

· число узлов - специфицируемый максимум числа узлов для сегмента тонкой Еthernet составля­ет 30, а для сегмента толстой Еthernet — 100 узлов;

· затухание - из-за использования медного кабеля сигнал в коаксиальном кабеле затухает, но в меньшей степени, чем в кабеле "витая пара". Длина кабельных сегментов ограничивается двумя тысячами метров;

· электромагнитные помехи - медный коаксиальный кабель остается подверженным ЕМI и пере­хвату информации.

2.3 Волоконно-оптический кабель

Волоконно-оптический кабель передает не электрические, а световые сигналы. Он намного более эффективный, чем другая среда передачи данных. Когда снизится его стоимость, этот кабель станет оптимальным выбором для сетей.


Волоконно-оптический кабель имеет внутренний сердечник из стекла или пластика, проводящий свет. Внутренний сердечник кабеля покрыт оболочкой — слоем стекла, отражающим свет. Оптическое волокно заключено в защитную пластиковую оболочку, которая может иметь различную жесткость (рис. 7).

Рисунок 7 – Пример двух типов волоконно-оптических кабелей

В жестких, усиленных конфигурациях волокна полностью "упакованы" в пластиковую оболочку, а для укрепления кабеля он иногда содержит усиливающие жилы. В облегченных конфигурациях между внутренней и внешней оболочкой оставлено пространство, заполненное гелем или другим специальным материалом. Внутренняя защитная оболочка обеспечивает необходимую жесткость, делающую кабель устойчивым к разрывам, а также перегреву или переохлаждению. Дополнительную защиту дает гель, усиливающие жилы и внешняя оболочка.

Кабель может содержать одно светопроводящее волокно, но обычно их несколько. Волоконно-опти­ческий кабель компактнее и легче, чем медный. Диаметр одного волокна примерно соответствует че­ловеческому волосу.

Существует несколько типов оптических волокон, обладающих различными свойствами. Они отличаются друг от друга зависимостью коэффициента преломления от радиуса центрального волокна. На рис. 8 показаны три разновидности волокна (А, Б и В). Буквами А и Б помечен мультимодовый вид волокона. Тип Б имеет меньшую дисперсию времени распространения и по этой причине вносит меньшие искажения формы сигнала. Установлено, что, придавая световым импульсам определенную форму, дисперсионные эффекты можно полностью исключить. При этом появляется возможность передавать импульсы на расстояние в тысячи километров без искажения их формы. Такие импульсы называются солитонами.

Рисунок 8 - Разновидности оптических волокон, отличающиеся зависимостью коэффициента преломления от радиуса

При современных технологиях необходимо использовать повторители через каждые 30 км (против 5 км для медных проводов). По сравнению с медными проводами оптоволоконные кабели несравненно легче. Так одна тысяча скрученных пар при длине 1 км весит 8 тонн, а два волокна той же длины, обладающие большей пропускной способностью, имеют вес 100кг. Это обстоятельство открывает возможность укладки оптических кабелей вдоль высоковольтных линий связи, подвешивая или обвивая их вокруг проводников.

Буквой В помечен одномодовый вид волокна (понятие мода связано с характером распространения электромагнитных волн). В упрощенном виде можно считать, что мода - это одна из возможных траекторий, по которой может распространяться свет в волокне. Чем больше мод, тем больше дисперсионное искажение формы сигнала. Одномодовое волокно позволяет получить полосу пропускания в диапазоне 50-100 ГГц-км. Эта разновидность волокна воспринимает меньшую долю света на входе, за то обеспечивает минимальное искажение сигнала и минимальные потери амплитуды. Следует также иметь в виду, что оборудование для работы с одномодовым волокном значительно дороже. Число мод, допускаемых волокном, в известной мере определяет его информационную емкость. Модовая дисперсия приводит к расплыванию импульсов и их наезжанию друг на друга. Дисперсия зависит от диаметра центральной части волокна и длины волны света.

Типичная волоконно-оптическая локальная сеть содержит компьютер или сетевое устройство с во­локонно-оптической платой сетевого интерфейса (NIC). Эта плата имеет входной и выходной интерфейсы. Данные интерфейсы с помощью специальных волоконно-оптических разъемов соединяются непосредственно с волоконно-оптическими кабелями. Противоположный конец кабеля подключается к связному устройству или стыковочному центру.

Устройства оптического интерфейса преобразуют сигналы компьютера в свет, передаваемый через оптоволокно. Когда свет проходит через кабель и достигает приемного конца, тот же интерфейс превращает его обратно в сигналы компьютера. Для одномодовых кабелей импульсы света создаются диодами с лазерной накачкой (ILD), генерирующими свет высокого качества. При приеме светового импульса он преобразуется в электрический сигнал P-i-N диодами (P-intrinsic-N) или фотодиодами.