Смекни!
smekni.com

Методические указания к выполнению лабораторных работ по курсу «Математическое моделирование в системах электроснабжения» для студентов 3 курса, обучающихся по направлению 140200 «Электроэнергетика» С (стр. 1 из 7)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Государственное образовательное учреждение высшего профессионального образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ

Директор ЭНИН

_____________Боровиков Ю.С.

«___»________________2011 г.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ

Часть 2

Методические указания к выполнению лабораторных работ по курсу «Математическое моделирование в системах электроснабжения» для студентов 3 курса, обучающихся по направлению 140200 «Электроэнергетика»

Составитель С.Г.Обухов

Издательство

Томского политехнического университета

2011

1. ОПТИМИЗАЦИОННЫЕ ЗАДАЧИ ЭЛЕКТРОСНАБЖЕНИЯ

1.1. Теоретические сведения

При проектировании и эксплуатации систем электроснабжения часто приходится иметь дело с многовариантными задачами, т.е. с задачами в которых из некоторого множества допустимых по техническим условиям решения нужно выбрать одно, которое является лучшим по какому либо критерию.

Такое решение принято называть оптимальным, а задачи, в которых производится поиск такого решения, получили название оптимизационных задач.

Применительно к системам электроснабжения оптимизационные задачи приходится решать при выборе напряжения электрических сетей, выборе числа и мощности источников питания, выборе оптимальной конфигурации электрической сети, выборе сечений проводников, определении рационального распределения источников реактив­ной мощности, выборе мест размещения источников питания и т.д.

В качестве критериев оптимальности в большинстве практических задач электроснабжения используются экономические показатели (себестоимость, прибыль, финансовые затраты и т.п.), хотя в некоторых случаях могут быть использованы и другие: минимум потерь напряжения (энергии), надежность электроснабжения, качество электроэнергии и т.л.

Таким образом, критерием оптимальности является количественная оценка оптимизируемого качества объекта.

На основании выбранного критерия оптимальности составляется целевая функция, представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение. Вид критерия оптимальности или целевой функции определяется конкретной задачей оптимизации.

Соответственно, задача оптимизации сводится к нахождению экстремума целевой функции.

При решении оптимизационных задач после выбора параметров оптимизации (сечения проводников, количество трансформаторов и т.д.), необходимо определить ограничения на эти параметры. При этом ограничения могут накладываться как по техническим, так и по экономическим соображениям.

В общем случае математическая модель оптимизационной задачи содержит три базовых компонента: целевая функция, ограничения, граничные условия.

Целевая функция представляет собой математическую запись критерия оптимальности:

Z(x1, x2, …., xn) → extr

где x1, x2, …., xn – искомые переменные, значения которых необходимо определить в процессе решения задачи.

Ограничения представляют собой различные технические, экономические и другие условия, которые необходимо учесть при решении задачи:

fj(x1, x2, …., xn) (≤ или =) bj где j = 1,2, … m

Граничные условия определяют диапазон изменения искомых переменных:

dixiDi, где i = 1,2, … n

di, Di – нижняя и верхняя граница диапазона изменения переменной xi соответственно.

Наиболее распространенным случаем граничных условий искомых переменных в реальных технических задачах является их неотрицательность – xi ≥ 0.

Для решения оптимизационных задач используют специальные математические приемы и методы, которые получили название методов математического программирования.

В соответствии с характером зависимости между переменными в выражении целевой функции оптимизационные задачи классифицируются на задачи линейного программирования и задачи нелинейного программирования.

Кроме того, по характеру изменения искомые переменные могут иметь непрерывный, целочисленный или дискретный характер. Соответственно, задачи оптимизации, в которых имеются целочисленные или дискретные переменные, подразделяются на задачи целочисленного или дискретного программирования.

Примерами непрерывных переменных являются значения тока и мощности в линии электропередачи; целочисленными переменными являются количество силовых трансформаторов и компенсирующих устройств; дискретными переменными являются сечения проводников и мощности трансформаторов, которые выбираются из стандартного ряда.

Важное влияние на вид оптимизационной задачи накладывает характер исходной информации. Если исходная информация однозначно определена, то она называется детерминированной; если же она носит случайный характер и подчиняется законам теории вероятностей, то она называется случайной. Исходная информация, которая носит неопределенный характер и не подчиняется теории вероятностей, называется недетерминированной.

Оптимизационные задачи, в которых исходная информация носит случайный характер, классифицируются как задачи стохастического программирования, а задачи, в которых исходная информация не определена, могут быть решены с помощью теории игр.

Существуют и другие виды классификации задач оптимизации, основной целью которых является выявление специфических особенностей тех или иных задач, играющих важную роль при разработке методов их решения.

1.2. Решение задач математического программирования средствами MS Excel

Электронные таблицы MS Excel содержат в своем составе специализированные средства, которые позволяют решать большинство типовых практических задач оптимизации.

При решении оптимизационных задач пользователь должен иметь представление об основах математического моделирования и уметь составлять оптимизационные математические модели. Кроме того, от пользователя требуется знание основных методов математического программирования и навыки практической работы с пакетом MS Office.

1.2.1. Решение задач линейного программирования

Общая задача линейного программирования состоит в минимизации (максимизации) линейной функции

Z = c1x1 + c2x2 + … + cnxn

от n переменных x1, x2, …, xn, удовлетворяющих условиям неотрицательности

x1 ³ 0, x2 ³ 0, …, xn ³ 0

и m линейным ограничениям

a11x1 + a12x2 + … + a1nxn £ (=,³) b1,

a21x1 + a22x2 + … + a2nxn £ (=,³) b2,

………………………………………

am1x1 + am2x2 + … + amnxn £ (=,³) bm.

Для того чтобы решить задачу линейного программирования в табличном редакторе Microsoft Excel, необходимо придерживаться следующего плана действий.

1. Ввести условие задачи:

a) создать экранную форму для ввода условия задачи:

• переменных,

• целевой функции,

• ограничений,

• граничных условий;

б) ввести исходные данные в экранную форму

• коэффициенты целевой функции,

• коэффициенты при переменных в ограничениях,

• правые части ограничений;

в) ввести зависимости из математической модели в экранную форму

• формулу для расчета целевой функции,

• формулы для расчета значений левых частей ограничений;

г) задать целевую функцию (в окне "Поиск решения"):

• целевую ячейку,

• направление оптимизации ЦФ;

д) ввести ограничения и граничные условия (в окне "Поиск решения"):

• ячейки со значениями переменных,

• граничные условия для допустимых значений переменных,

• соотношения между правыми и левыми частями ограничений.

2. Решить задачу:

а) установить параметры решения задачи (в окне "Поиск решения",),

б) запустить задачу на решение (в окне "Поиск решения ";

в) выбрать формат вывода решения (в окне "Результаты поиска решения")

Рассмотрим решение оптимизационной задачи линейного программирования средствами MS Excel на конкретном примере.

Задача 1

Предприятие выпускает три вида продукции: табуретки, столы и стулья. На изготовление каждого изделия требуется три вида сырья: ткань, доски и фурнитура. Для упрощения задачи будем считать, что расход энергетических, трудовых и других ресурсов на изготовления каждого вида продукции одинаков. Нормы расхода каждого вида сырья на изготовление одного изделия и прибыль от его реализации приведены в табл. 1.1. Пли планировании производственной программы необходимо учесть ограничения на каждый вид сырьевого ресурса, которые составляют 80, 120, 60 для ткани, досок и фурнитуры соответственно. Требуется определить, в каком количестве нужно выпускать каждый вид изделия, чтобы получить максимальную прибыль (маркетинговую ситуацию на рынке не учитываем – все что произвели, сразу продали).


Таблица 1.1.

Исходные данные к задаче 1

Табурет

Стул

Стол

Ткань

1

3

2

Доски

2

4

8

Фурнитура

1

2

4

Прибыль

25

70

120

Решение.