11) строят график суммарного индикаторного крутящего момента многоцилиндрового двигателя Mi.
После построения графика Mi проверяют правильность расчетов. Для этого определяется средняя величина суммарного крутящего момента (Mi) по диаграмме и сравнивается с расчетной величиной среднего крутящего момента. Разница между ними не должна превышать 5%. Расчетное значение определяется из теплового расчета: Mi = Me/hм, где hм - механический КПД двигателя.
После построения всех графиков и диаграмм необходимо на первом листе привести схему действующих сил с правилом знаков и указать принятые масштабы.
В правом нижнем углу вычертить штамп в соответствии с требованиями ЕСКД.
Порядок выполнения динамического расчета КШМ изложен в работах [1 с.366-352]; [2 с.124-192]; [5 с.60-115].
Для выполнения динамического расчета КШМ на ЭВМ на кафедре ’’Техническая эксплуатация автомобилей’’ разработана программа и методические указания применительно к ЭВМ.
3.3 Патентно- информационное исследование
Патентно-информационное исследование даёт возможность составить представление о достигнутом уровне двигателестроения, проследить основные тенденции его развития, обоснованно выбрать аналог разрабатываемого двигателя и его конструктивную схему.
Патентная информация стран СНГ по двигателям приведена в официальном бюллетене ’’Открытия, изобретения’’ в разделе F, Механика; освещение; отопление; двигатели и насосы;…,[13].
При проведении патентного поиска необходимо обратиться к патентным фондам Японии, ФРГ, Франции, Великобритании и США, информация по которым приведена в бюллетене ’’Изобретения за рубежом’’. Исходя из требований, предъявляемых к двигателям, на основании анализа патентной литературы, реферативных журналов «Двигатели внутреннего сгорания», журналов «Двигателестроение», справочной и другой литературы провести сравнительный анализ двигателей данного типа и класса отечественного и зарубежного производства. На основании такого обзора выбрать прототип двигателя. В ПЗ привести технические характеристики рассмотренных двигателей и их анализ по основным оценочным показателям: эффективному удельному расходу топлива ge, литровой мощности Nл, поршневой мощности Nп и др. [1 с.366-372], [3 с.21-32], [5 с.8-18, 356-370].
3.4 Обоснование и выбор механизмов и систем двигателя
На основании патентного поиска, изучения конструкции двигателей-аналогов и прототипа необходимо сделать обоснование и выбор механизмов и систем разрабатываемого двигателя.
3.5 Общие предпосылки конструктивной разработки двигателя
Исходными материалами для конструктивной разработки являются:
параметры двигателя, указанные в задании на курсовую работу; параметры, полученные в результате теплового и динамического расчетов; данные, полученные в результате патентно-информационных исследований.
Перед началом проектирования необходимо проанализировать конструкцию прототипа, уточнить назначение и взаимосвязь всех деталей двигателя, принять решение по изменению или замене отдельных деталей и агрегатов. Принятые решения уточняются с консультантом.
Последовательность проектирования может быть различной, но лучше начинать с разработки элементов поршневой группы, переходя затем к шатуну, коленчатому валу, головке цилиндров, после этого приступить к конструированию блока и картера двигателя, механизма газораспределения, систем привода к внутренним и внешним агрегатам [3 с.61-68].
Поперечные и продольные разрезы отечественных и зарубежных двигателей приведены в литературе [3 с.72, 75, 80, 81,90-92, 95, 107]; [5 с.358-371]; [6 с.29-40]. Данный раздел выполняется по указанию руководителя.
3.5.1 Расчет деталей, узлов и систем двигателя
При изменении по сравнению с прототипом конструкции деталей или узлов необходимо дать технико-экономическое обоснование принятого решения. Вычертить рабочие чертежи изменённых деталей.
Расчет начинают с определения условий работы: величины, характера и места приложения нагрузки, выбора материала, термообработки детали.
Для каждой детали или узла в ПЗ вычерчивается расчетная схема или эскиз с нанесением приложенных сил, моментов, реакций.
Полученные результаты расчетов необходимо сравнить с допустимыми величинами и сделать вывод о работоспособности детали.
Запись вычислений следует вести по схеме: формула - численное значение величин – результат – размерность.
Поршневая группа. Предварительные размеры деталей поршневой группы выбираются по статистическим данным и затем проверяются расчетом и уточняются: [1 с.411-423], [2 с.204-212], [5 с.117-152], [3 с.138-158].
Поршень. Днище поршня рассчитывается на изгиб; головка проверяется на сжатие в сечении по канавке маслосъемного кольца; юбка проверяется на удельное давление от максимальной боковой силы. Производится также расчет зазоров в соединениях.
Поршневой палец. Определяется удельное давление в бобышках и верхней головке шатуна; проверяется палец на напряжения изгиба, среза и овализации; производится расчет зазоров в соединениях [2 с.216-222]; [1 с.432-435]; [5 с.153-157].
Поршневое кольцо. Определяется среднее давление кольца на стенку цилиндра, напряжения изгиба в рабочем состоянии и при надевании кольца на поршень. Строится эпюра давлений кольца на стенки цилиндров [1 с.423-432]; [2 с.212-215]; [3 с.158-169]; [5 с.157-163].
Шатунная группа. Проектирование шатунной группы сводится к разработке элементов шатуна: поршневой головки, кривошипной головки и стержня шатуна.
Предварительно определяют размеры элементов шатуна для данного типа двигателя по статистическим данным.
Конструирование поршневой головки ведется в зависимости от способа установки поршневого пальца (закрепленный или плавающий). При закреплённом пальце необходимо указывать способ его закрепления. В случае плавающего пальца надо предусмотреть подшипник скольжения в головке шатуна и отверстие для подвода масла.
Кривошипная головка конструируется исходя из обязательного условия возможности демонтажа шатуна через цилиндр двигателя при снятой головке блока цилиндров. При относительном размере шатунной шейки d/lш=0,66 необходимо выполнить косой разъем кривошипной головки.
На разрезе шатунной шейки коленчатого вала следует показать отверстие для подвода масла к шатунному подшипнику в соответствии с диаграммой износа шатунной шейки. Шатунные болты должны иметь возможно малые концентраторы напряжений.
После конструктивной разработки всех элементов шатунной группы и установления размеров производится расчет на прочность и корректируются принятые размеры [1 с.445-455]; [2 с.222-245]; [3 с.177-199]; [5 с.165-198].
Коленчатый вал. Проектирование коленчатого вала следует начинать с определения предварительных размеров его элементов по статистическим данным [1 с.466-486];[2 с.245-270]; [3 с.200-219]; [5 с.199-222]. При выборе размеров элементов вала необходимо иметь в виду, что длины коренной и шатунной шеек, толщина щек не могут назначаться произвольно, а должны быть увязаны с принятым межцилиндровым расстоянием.
Правильность выбранных размеров проверяется по условным удельным давлениям на шатунную и коренные шейки и расчетам на прочность наиболее нагруженных элементов кривошипа.
По результатам проведенного расчета уточняются предварительно выбранные размеры элементов кривошипа, а затем производится конструктивная разработка коленчатого вала.
Сначала производится оформление первого и последнего кривошипов коленчатого вала, его шеек и щек, затем приступают к разработке носка и хвостовика на продольном разрезе двигателя.
В конструктивную разработку коленчатого вала может включаться разработка упорного подшипника для фиксации коленчатого вала от осевых перемещений; разработка конструкции коренных и шатунных вкладышей с соответствующим обоснованием в ПЗ применённого антифрикционного материала.
При расчете коленчатого вала определяются запасы прочности коренной, шатунной шеек и щеки. При этом ведут расчет одного кривошипа, рассматривая коленчатый вал как разрезную балку.
Механизм газораспределения (МГР). Для получения высоких мощностных и экономических показателей работы двигателя МГР прежде всего должен обеспечить эффективную смену рабочего тела в цилиндре. Кроме того, конструкция МГР должна обеспечить надежную работу механизма на всех скоростных и нагрузочных режимах работы двигателя, что требует внимательного подхода к расчету кинематики и динамики МГР [10].
Конструирование механизма газораспределения сводится к разработке привода механизма газораспределения, распределительного вала с фиксацией его от осевых перемещений, клапанов, толкателей, штанг, коромысел и т.д. Следует учитывать, что повышение долговечности обеспечивается за счет подбора материалов, наиболее отвечающих условиям работы этих деталей; обеспечение достаточной смазки трущихся поверхностей деталей механизма; принудительного вращения клапанов и ряда других мероприятий.
Расчет механизма газораспределения изложен в работах: [1 с.484-516]; [2 с.283-315]; [3 с.220-306]; [5 с.244-283]; [10].
Картер двигателя. Размеры картера, а также положение распределительного вала (при нижнем его расположении) определяется траекториями движения крайних точек кривошипной головки шатуна.
В конструкциях двигателей, имеющих короткие шатуны, возможно задевание стержня шатуна за нижнюю часть цилиндра. Для проверки этого положения, а также определения размеров картера и размещения нижнего распределительного вала поступают следующим образом. Контур шатуна с поперечного разреза двигателя переносят на кальку (ПЗ). Затем вырезанный по контуру шатун перемещают так, чтобы центр поршневой головки перемещался по оси цилиндра, а центр кривошипной головки – по окружности радиуса кривошипа. Траекторию движения точек кривошипной головки наносят на поперечный разрез двигателя. Одновременно с нанесением траектории определяют, задевает ли стержень шатуна за цилиндр. В случае задевания – в цилиндре делают прорези для прохода шатуна.