Смекни!
smekni.com

Алексеева Кафедра «Технология неорганических веществ» (стр. 2 из 4)

Соли алюминия. Сульфат алюминия (глинозём) Al2(SO4)3·18H2O получил широкое распространение в России и за рубежом для очистки природных и сточных вод.

Гидроксид алюминия, образующийся при гидролизе солей алюминия, является типичным амфотерным соединением. В кислой и щелочной среде гидроксид алюминия растворяется. Гидроксид алюминия не растворим в дистиллированной воде, однако растворимость его в сточных водах может быть большой. Растворимость гидроксида алюминия в дистиллированной воде резко возрастает в пределах 4,5>pH>8.

В зависимости от состава примесей сточных вод процесс коагуляции солями алюминия рекомендуется проводить в пределах 4<pH<8.

С увеличением температуры растворимость гидроксида алюминия снижается. Основные соли алюминия также слабо растворяются в воде.

Для быстрого и полного протекания процесса гидролиза необходим некоторый щелочной резерв воды для связывания ионов водорода, выделяющихся при гидролизе. Этим щелочным резервом могут быть бикарбонат-ионы, присутствующие в воде, или специально введённые щелочные реагенты – известковое молоко, кальцинированная или каустическая сода.

В результате применения сульфата алюминия увеличивается степень минерализации сточной воды.

Для сточных вод, имеющих кислую реакцию, целесообразно применять алюминат натрия (NaAlO2). имеется также возможность проведения процесса коагулирования без подщелачивания с одновременным использованием сульфата алюминия и алюмината натрия.

Очень перспективным коагулянтом является оксихлорид алюминия Al2(OH)5Cl. В Японии этот коагулянт применяется с 1966 г. Он получается из гидроксида алюминия и соляной кислоты. Основные преимущества оксихлорида алюминия, по сравнению с глинозёмом, - большое содержание алюминия в продукте, меньшее снижение щёлочности воды и меньшее повышение её солесодержания. Оксихлорид имеет более сильное коагуляционное действие и большую скорость хлопьеобразования. Хорошо растворяется в воде.

Получил также применение полихлорид алюминия [Al2(OH)nCl6-n]m(SO4)x, где 1

n
5, m
10. Этот коагулянт используется в виде растворов 10 или 30%-ной концентрации (по Al2O3).

Предложен также коагулянт, получаемый из водорастворимых основных солей алюминия с общей формулой Aln(OH)mX3n-m, в которой Х – анион одновалентной минеральной кислоты (Cl-, NO3- и др.); 3n>m; основность соли, т.е. отношение 100(m:3n), составляет 30 – 83%. Этот коагулянт превосходит оксихлорид алюминия по рабочему диапазону pH, скорости хлопьеобразования и отстаивания, размерам осевших частиц, прозрачности полученной воды. Кроме того образуется меньшее количество осадка.

Для рекуперации белковых веществ из сточных вод предложено использовать в качестве коагулянта лигносульфонат алюминия, получаемый из лигносульфоната натрия или кальция путём ионообменной реакции.

В качестве коагулянтов могут быть применены алюмокалиевые квасцы [AlK(SO4)2·12H2O] или алюмоаммонийные квасцы [Al(NH4)(SO4)2·12H2O], имеющие меньшую стоимость и менее дефицитные, чем глинозём. Следует отметить, что при использовании алюмоаммонийных квасцов и наличии в очищаемой воде свободного хлора наблюдалось образование токсичных хлораминов.

Дешёвым коагулянтом является хлорид алюминия, который получают на нефтехимических комбинатах термическим гидролизом каталитического комплекса хлорида алюминия, применяемого в процессах изомеризации и при производстве этилбензола. Показана возможность использования этого коагулянта для очистки сточных вод производства синтетического спирта /8/.

Разработан способ получения оксихлоридосульфатов алюминия общей формулы Alm(OH)nClk(SO4)m+2, где m=n+k/2+1, причём m – чётные числа, используемых в качестве коагулянтов /9/. Отличие структуры заявляемых оксихлоридосульфатов алюминия: Al2(OH)Cl(SO4)4, Al4(OH)5Cl(SO4)6, Al4(OH)3Cl3(SO4)6, Al6(OH)5Cl5(SO4)8, Al6(OH)8Cl2(SO4)8 и др. от структуры известных заключается в наличии ковалентной связи между двумя атомами кислорода, обуславливающей образование цепочки, характерной для пероксидов. Заявленные оксихлоридосульфаты алюминия обладают высокой коагулирующей активностью. При их использовании в качестве коагулянтов для очистки бытовых и промышленных сточных вод выявлены следующие преимущества по сравнению с известными: повышение эффективности при низких температурах очищаемой воды; более широкая область оптимальных значений рН среды; повышение степени очистки воды в отношении широкого перечня контролируемых примесей (Zn2+, Feобщ, Crобщ, F-, азот аммонийный, нефтепродукты, масла).

Соли железа. Сульфат железа (II) или железный купорос FeSO4·7H2O представляет собой прозрачные кристаллы зелёного цвета. Этот коагулянт может применятся при pH>9 – 10. Для уменьшения концентрации растворённого гидроксида железа (II) при более низких величинах pH производят окисление двухвалентного железа в трёхвалентное.

Процессы гидролиза и окисления солей железа (II) протекают эффективно при pH>8,0.

Положительное качество солей железа как коагулянтов – высокая плотность гидроксида, обеспечивающая получение плотных, тяжёлых хлопьев, оседающих с большой скоростью.

Коагуляция с использованием солей железа неприемлема для сточных вод, содержащих фенолы, так как образующиеся растворимые в воде феноляты железа интенсивно окрашены. Кроме того, гидроксид железа является катализатором, способствующим окислению некоторых органических веществ и образующим комплексные окрашенные соединения, растворимые в воде.

Следует отметить возможность использования в качестве коагулянта железного купороса, являющегося отходом производства диоксида титана и травления металла.

Хлорид железа (III) FeCl3·6H2O представляет собой тёмные кристаллы с металлическим блеском, очень гигроскопичен.

С целью повышения эффективности очистки сточных вод предложено использовать коагулянт, состоящий из смеси растворов сульфата алюминия и хлорида железа в соотношении 1:1 (по массе). Преимущества смешанного коагулянта: повышение эффективности очистки воды при низких температурах и улучшение седиментационных свойств хлопьев.

Однако трудности, связанные с хранением и приготовлением коагулянта, а также возможность повышения содержания ионов железа в очищенной воде при нарушениях технологического процесса, ограничивают применение смешанного коагулянта.

Соли магния. Хлорид магния предложено использовать для очистки сточных вод производства полистирольных пластмасс, а также вод, загрязнённых эмульгированными маслами. Очистка производится при рН

11,0.

Использование солей магния позволяет сократить продолжительность хлопьеобразования. Снижение температуры очищаемой воды практически не уменьшает эффективности её очистки.

В качестве коагулянтов могут быть использованы сульфат магния (MgSO4·7H2O) и хлорид магния (MgCl2·6H2O).

Для очистки сточных вод может быть использован известковый шлам с добавлением карбоната магния. При этом происходит осаждение Mg(OH)2 и CaCO3. Преимущества этого метода: вода в процессе очистки практически не загрязняется минеральными солями, имеется возможность регенерации Mg из осадка путём обработки его диоксидом углерода с образованием растворимого в воде бикарбоната магния, который может быть повторно использован.

Другие соли. Соли кальция используют для обесцвечивания сточных вод производства сульфатной целлюлозы. Предлагается применять в качестве коагулянтов оксихлорид циркония, сульфат циркония или их смесь с кремневой кислотой.

Кроме гидроксидов металлов, для коагуляционной очистки сточных вод используют нерастворимые фосфаты. С помощью фосфатной коагуляции производится эффективная очистка воды от радиоактивных примесей. Высокая степень дезактивации воды обеспечивается при соотношении Na3PO4:Ca(OH)2=2,2 и рН=11,3 – 11,5. Положительные результаты получены при одновременном использовании фосфата кальция и хлорида железа (III).

Использование карбоната кальция позволяет не только разрушать коллоидную систему, но и приводить к улучшению фильтруемости выпавшего осадка. Этот коагулянт может быть образован путём последовательной обработки сточной воды гидроксидом кальция и диоксидом углерода /8/.

Органические коагулянты. В последнее десятилетие в водоочистке наряду с минеральными начинают применяться органические коагулянты – водорастворимые катионные полимеры, которые в основном используются для очистки сточных вод и более полного обезвоживания осадков. Положительно заряженные макромолекулы органических коагулянтов взаимодействуют с отрицательно заряженными коллоидными частицами загрязнений в воде, вызывая их дестабилизацию и слипание частиц с образованием более крупных агрегатов. Стоимость органических коагулянтов выше, чем минеральных, однако при их применении возможна более глубокая очистка воды от коллоидных и взвешенных частиц. Кроме того, отказ от добавления минеральных коагулянтов уменьшает солесодержание в очищенной воде, что снижает нагрузку на ионитовые фильтры и уменьшает минерализацию сточных вод. Достоинством органических коагулянтов по сравнению с минеральными является возможность применения их в значительно меньших концентрациях, использование в широком интервале рН, а также отсутствие влияния их на кислотность среды.