Смекни!
smekni.com

“львовско-варшавская школа философии. Альфред тарский” (стр. 11 из 15)

В первые десятилетия ХХ ст. семантические понятия (истины, обозначения, определения, выполнения и т.п.) воспринимались с подозрением, поскольку рассуждения с их использованием часто приводили к антиномиям, например, лжеца (Эвбулида), антиномии, использующей выражение "гетерологический" (Греллинга-Нельсона) или определимости при помощи ограниченного числа слов (Ришара). В результате сложившегося положения ученые стремились избегать вопросов семантики и не выходить за границы синтаксиса в своих исследованиях. Полученные же в области семантики результаты были сформулированы в неточных понятиях, используемых часто интуитивно. Поэтому необходимость создания теории семантики как точной дисциплины ощущалась весьма остро. Тот факт, что такая теория возникла в Варшаве неудивителен, поскольку главным ее инструментом стало разделение языка-объекта и метаязыка, введенное implicite Лесьневским. Более того, не только инструмент был предложен Лесьневским, но и само поле исследований было в значительной мере им подготовлено. Об этом свидетельствует одно из первых примечаний Тарского к работе "Понятие истины в языках дедуктивных наук" , в котором он пишет: "Замечания, которые я сделаю в этом контексте, большей частью не составляют достояние моих собственных исследований: в них нашли свое выражение взгляды, развитые г. Ст. Лесьневским в его лекциях в Варшавском университете (начиная с 1919/20 акад. г.), в научных дискуссиях и частных беседах; особенно это относится почти ко всему, что я скажу о выражениях в кавычках и семантических антиномиях". Кроме того, Лесьневскому принадлежит также подробнейшим образом разработанная теория определений, как и другие вопросы семантики, например, денотации (референции) или обозначения, в полной мере используемые Тарским в своей работе. Самому же Тарскому принадлежит использование по существу понятия "выполнения", которое ему было , вероятно, "ближе" как математику.

Цель своего исследования Тарский формулирует следующим образом: "Настоящая работа посвящена почти полностью только одному вопросу: проблеме дефиниции истины; ее сущность состоит в том, чтобы, имея в виду тот или иной язык, сконструировать по существу верную и формально правильную дефиницию термина "истинное предложение". Этот вопрос, относящийся к классическим проблемам философии, вызывает немалые трудности: несмотря на то, что существующее обыденное значение этого термина кажется достаточно выразительным и прозрачным, все попытки окончательного уточнения его значения кончались до сих пор неудачей, а рассуждения, в которых выступал упомянутый термин, основанные на интуитивных посылках, неоднократно приводили к парадоксам и антиномиям (которые все же удавалось более или менее удовлетворительно распутывать). С этой точки зрения понятие истины разделило судьбу прочих аналогичных понятий из области т.н. семантики языка".

Исходным пунктом для Тарского является "семантическая дефиниция" истины в естественном языке, наиболее приближающаяся к классическому ее определению, которое он заимствует у Котарбинского :

(1) истинным предложением является предложение, которое говорит, что дело обстоит так-то и так и дело обстоит именно так.

Хотя приведенное высказывание, считает Тарский, несовершенно как с формальной точки зрения, так и с точки зрения очевидности и однозначности используемых в нем понятий, тем не менее "интуитивный смысл и общая интенция этого высказывания кажутся достаточно прозрачными и понятными; задачей семантического определения было бы как раз уточнение этой интенции и выражение ее в безукоризненной форме". Исходным пунктом для дальнейших уточнений (1) могут быть предложения, построенные по следующей схеме:

(2) x является истинным предложением тогда и только тогда, когда p.

Схема (2) порождает ряд частичных дефиниций истины, реализуемых тогда, когда символ "p" заменяется некоторым предложением, а "x" - произвольным индивидуальным именем этого предложения. Наиболее часто встречаемой категорией индивидуальных имен, для которых выполняется условие (2), являются имена в кавычках. Примером может служить следующее выражение:

(3) "Снег падает" является истинным предложением тогда и только тогда, когда снег падает.

И здесь мы встречаемся с первым отступлением Тарского от концепции радикального номинализма Лесьневского, которую он вначале разделял. В частности, Тарский предлагает при помощи именования некоторых морфологических категорий языка выражения в кавычках понимать как общие имена именно морфологии, а не произвольные классы выражений, определяемые эквиморфностью, "поскольку в приведенной интерпретации закавыченные имена должны пониматься как общие имена (а не единичные), обозначающие одновременно как запись, взятую в кавычки, так и каждую запись одной с ней формы. Чтобы избежать подобных упреков и при этом не вводить некоторые излишние усложнения в рассуждения, связанные, между прочим, с необходимостью оперировать понятием эквиморфности, удобно договориться, что такие термины как "выражение", "слово", "предложение" и т.д. будут постоянно обозначать не конкретные записи, а целые классы записей, эквиморфные с некоторой данной записью, и в этом единственном смысле трактовать закавыченные имена как индивидуальные имена выражений." Однако морфологические особенности языка можно использовать explicite (при этом само понятие морфологии как понятие вышестоящее и выражающее результаты отодвигается на задний план), выделив процесс составления имени и тем самым образовать для индивидуальных имен предложений "т.н. структурно-описательные имена", выделяющие знаки, из которых составлен десигнат данного имени. Следующий пример иллюстрирует использование структурно-описательного имени:

(4) Выражение, составленное из двух слов, первое из которых состоит из следующих пяти букв: эс, ен, е, гэ, второе - из следующих четырех букв: пэ, а, дэ, а, е, тэ является истинным предложением тогда и только тогда, когда снег падает.

Несмотря на то, что конкретизация схемы (2) в вопросе очевидности и интуитивности не вызывает сомнений, однако в некоторых ситуациях схема (2) становится источником антиномии лжеца (ее Тарский приводит в формулировке Лукасевича). Пусть символ "c" является сокращением для следующего предложения:

(5) "Предложение, написанное в [?] строке сверху".

Рассмотрим предложение

(6) "c не является истинным предложением".

В результате применения схемы (2) к (6) получим:

(7) "c не является истинным предложением" есть предложение истинное тогда и только тогда, когда c не является истинным предложением.

Памятуя о значении символа "c" можно сформулировать следующее утверждение:

(8) "c не является истинным предложением" идентично с c.

Сопоставление (7) и (8) тотчас приводит к противоречивому заключению:

(9) c является истинным предложением тогда и только тогда, когда c не является истинным предложением.

Источником антиномии служит подстановка вместо символа "p" в (2) выражения, содержащего термин "истинное предложение", но Тарский замечает, что разумного повода, по которому подобные подстановки должны бы быть принципиально запрещены, не видать." Оставляя в стороне сформулированную выше антиномию Тарский пробует обобщить предложения типа (3) так, чтобы все же получить дефиницию истины. Для этого необходимо получить такую схему, которая бы охватывала все предложения типа (3). Такой схемой могла бы быть следующая конструкция:

(10) Для произвольного p - "p" является истинным предложением тогда и только тогда, когда p.

Однако (10) еще не обладает желаемой общностью, ибо область возможных подстановок "x" ограничена именами в кавычках. Для ее расширения Тарский использует тот факт, что каждому истинному предложению (и вообще каждому предложению) соответствует имя в кавычках, обозначающее именно это предложение:

(11) Для произвольного x - x является истинным предложением тогда и только тогда, когда - для некоторого p - x идентично с "p" и p.

В таком использовании закавыченных имен Тарский также видит опасность. Имена в кавычках можно понимать как простые выражения, т.е. как синтаксически не составные. Тогда каждое имя в кавычках является индивидуальным именем некоторого конкретного выражения. Тарский замечает, что такая интерпретация весьма согласуется с интуицией, но тогда частичные дефиниции типа (3) невозможно каким-либо разумным способом обобщить. В частности, в (2) и (3) оказывается невозможным что-нибудь подставить вместо "p", ибо подстановка совершается на место переменной, а "p" таковой не является. Невозможно использовать также и структурно-описательное имя (как в (4)), ибо и оно также является именем индивидуальным.

Можно закавыченные имена понимать как составные выражения, в которых кавычки являются функтором от аргументов-предложений, значениями которого будут имена. Но и это решение, считает Тарский, неудовлетворительно: кавычки не являются экстенсиональным функтором и выражение (11) не может быть принято сторонниками элиминации интенсиональных выражений, к которым и он сам принадлежит в согласии с "идеологией" варшавской школы. Но и помимо этого трактовка кавычек как функций чревата антиномией лжеца даже без использования термина "истинное предложение". Пусть "c" является типографическим сокращением выражения

(12) Предложение, записанное на этой странице в [?] строке сверху.