Костя, нужно убрать все украшения (салатовые выделения). Ты пишешь реферат. В тексте сохранились гиперссылки, убери их
Пиротехника – наука о свойствах горючих смесей и изделий из них, способах их изготовления и применения. Пиротехнические составы широко используются в военном деле и промышленности. Но в этом реферате я буду рассматривать пиротехнику в более узком смысле – как науку, знание которой необходимо для создания произведений фейерверочного искусства. [w1]
Рисунки в тексте несут функциональную нагрузку. Если они приводятся, то для чего-то. Для чего рисунки у тебя? К рисункам должны быть подрисуночные подписи.
Требования к оформлению: шрифт – 14, интервал – 1, 5, выравнивание по ширине
Ещё в древние времена человек придавал огню большое значение. Его использовали как средство коммуникации, как предупреждение об опасности и для оформления различных ритуалов, священнодействий. У многих народов существуют традиции, связанные с использованием костров (в России - это Масленица, праздник Ивана Купалы), свечей, факелов и т.п. Это были прообразы первых фейерверков.Даже для самого простейшего фейерверка требуется смесь калиевой селитры (нитрата калия), древесного угля и серы. Горючие свойства этой смеси известны человечеству не менее полутора тысяч лет. Несколько меньший срок люди знакомы с метательным действием и взрывчатыми свойствами данной смеси, получившей название «черный» или «дымный порох». История создания черного пороха, служившего единственным взрывчатым веществом в течение 600 лет, прежде всего является историей развития промышленного неорганического синтеза.
Два из трёх компонентов – сера и древесный уголь – известны с древнейших времен. Но только разработка методов получения и очистки легко разлагающегося окислителя – калиевой селитры – позволила человеку осуществить горение без доступа воздуха.
«Родиной» селитры можно считать Китай, так как первое описание состава и рецепта приготовления горючей смеси из селитры, серы и угля связывают с именем даосского алхимика. Приводимый состав смеси (40 частей селитры, 20 частей серы и 5 частей угля) соответствует медленно горящему ракетному топливу, но не взрывчатому пороху. Фейерверки на основе горючих смесей были известны в Китае и раньше.
Ключевую роль в распространении фейерверка сыграл Марко Поло, который после долгих странствий привез на родину порох из Китая.
Уже к XV веку каждая европейская страна имела свою версию фейерверка. В Италии и Германии даже сформировались пиротехнические школы.
В начале XIX века развитие фейерверка вступило в новую стадию. Теперь пиротехники задумались не только над технической стороной, но и над варьированием цвета фейерверка. Палитра значительно расширилась, также появились новые спецэффекты.
В России первый фейерверк был устроен в городе Устюг в 1674 году. При Петре I фейерверки становятся частью увеселений, устраиваемых на различных торжествах. Последний фейерверк в дореволюционной России был в августе 1915 года в честь взятия русскими войсками Перемышля. Возрождаться у нас фейерверки стали со времен Великой Отечественной Войны.
Ни одна пиротехническая реакция не обходится без горения и выделения тепла.
Горение – процесс, при котором происходит превращение вещества или смеси веществ, сопровождающееся интенсивным выделением энергии и теплообменом с окружающей средой. [w2] Данное определение относится не только к химическим реакциям. В активной зоне атомных электростанций происходит именно горение ядерного топлива. Горение основано на способности некоторых превращений протекать с самоускорением за счёт выделяющегося тепла или накопления активных частиц (атомов и радикалов в химических реакциях, нейтронов в ядерных реакциях). Далее я рассмотрю только химические реакции.
При горении световое излучение может почти отсутствовать, но тепло выделяется всегда. Реакции горения, протекающие в пиротехнических смесях, используются для получения световых эффектов, а также для совершения механической работы – выбрасывания искр и звёздочек, полета ракет и т.п. Очевидно, что движение ракеты связанно не только с выделением тепла, но и с образование газов в результате горения.
Одного понятия “теплоты” характеристики таких реакций не достаточно.
Полное изменение энергии в результате горения пиротехнической смеси с образованием газообразных продуктов будет выражаться суммой внутренней энергии ∆U и энергии расширения газов P∆V. В химической термодинамики эту суму называют изменением энтальпии ∆H:
∆H=∆U+P∆V.
Энтальпия - теплота, поглощенная системой в реакции, в сумме с механической работой, совершенной внешними силами над системой[w3] . Так как при горении теплота и газы не поглощаются, а выделяются, энтальпия реакций всегда отрицательна. Вычислить изменение энтальпии реакции можно, не проводя саму реакцию, поскольку имеются табличные данные по стандартным энтальпиям образования химических соединений.
Из определения энтальпии следует, что простые вещества в наиболее устойчивой форме при данных условиях имеют нулевое значение энтальпии. Например, элемент кислород существует в виде двух простых веществ - газа кислорода O2 и газа озона О3. Кислород составляет 20 % воздуха и вполне устойчив при стандартных условиях. Озон О3 - газ, запах которого можно ощущать во время грозы и вблизи мощных ультрафиолетовых излучателей. Этот газ образуется из кислорода в верхних слоях атмосферы под действием космических лучей и жесткого ультрафиолетового излучения солнца. Озон легко распадается с образованием кислорода. Озон - неустойчивая форма существования элементарного кислорода. Энтальпия реакции:
3O2 = 2O3
∆H=+285кДж, или 142,5кДж/моль озона
Поскольку ∆H= 0 для кислорода 02 по определению, энтальпия реакции, пересчитанная на 1 моль O3, и будет стандартной энтальпией образования O3. Положительное значение свидетельствует о затрате энергии (кислород + энергия) при образовании озона.
Пользуясь табличными значениями ∆H для исходных соединений и продуктов реакции, легко определить энтальпию реакции. Для этого из суммы табличных значений энтальпий образования продуктов реакции надо вычесть соответствующие значения для исходных веществ с учетом коэффициентов в уравнении реакции.
Рассмотрим следующий пример:
2KClO3+3C=2KCl+3CO2
С учетом коэффициентов в уравнении реакции получаем:
∆H = [2∙(-437) + 3∙(- 394)] - [2∙ (- 389) + (0)] =-1278 кДж
Большое отрицательное значение энтальпии указывает на возможность самопроизвольного протекания этой реакции. Реакции, в ходе которых энергия выделяется в окружающую среду, называются экзотермическими. Для более объективной оценки возможности осуществления самоподдерживающегося процесса горения следует вычислить энтальпию реакции на 1 г исходной смеси:
-1278 =-4,55 кДж/г
281
Из практики известно, что устойчивое горение обычно возможно в смеси веществ, способной выделять при реакции не менее 1,5 кДж/г.[w4]
Положительное значение энтальпии говорит о том, что для осуществления этой реакции к реагентам необходимо подводить энергию, - следовательно, смесь сульфата калия с углем не может гореть. Реакции, которые могут идти только с поглощением энергии из окружающей среды, называются эндотермическими.
Приведенные примеры показывают, что использование табличных данных [w5] позволяет экономить реактивы и не тратить время на приготовление неэффективных смесей.
В этом параграфе нет материала о скорости реакции горения!!!
Для предсказания горючих свойств смеси нам необходимо [w6] использовать методы двух разделов физической химии - химической термодинамики (возможность реакции, вероятные продукты и тепловой эффект) и химической кинетики (скорость и механизм процесса). В настоящее время строгие теоретические расчеты скорости реакции возможны только для газофазных реакций, когда газами являются все исходные вещества и все
продукты реакций.
Реакции горения пиротехнических смесей начинаются не в твердой смеси, а чаще всего в жидком или газовом слое, который образуется над смесью при ее нагревании. Для зажигания смеси селитры с углем необходимо сначала расплавить селитру. Аммиачная селитра плавится гораздо легче, чем калийная или натриевая, поэтому ее смесь с углем загорается легче, чем смесь калийной селитры с углем.
Быстрая экзотермическая реакция горения происходит в газокапельном слое над твердой смесью, образованном газообразными и жидкими продуктами сгорания, парами азотной кислоты и аммиака (продукты распада нитрата аммония), жидкими микро каплями оксида, нитрата и нитрита калия(калийная селитра). Однако для осуществления этой быстрой реакции необходимо разогреть поверхность твердой смеси до температуры испарения наиболее летучих веществ. Скорость этого разогрева определяется соотношением тепловыделения в газокапельном слое и тепло затрат на плавление и испарение исходных веществ.