– существующие АЭС потенциально опасны: ни один из современных энергоблоков не гарантирован от тяжелых аварий;
– использование энергии атома привело к радиационному и экологическому загрязнению огромных территорий, воды, воздуха и материалов, используемых в атомной энергетике;
– взрывы ядерных устройств, аварии и обычная работа АЭС повысили радиационный фон планеты и оказывают негативное влияние на здоровье людей;
– как показывает опыт, аварийно-спасательные службы после масштабной аварии и сегодня оказываются не готовыми к эффективной работе по защите персонала АЭС и населения прилегающих территорий, особенно в начальном периоде.
Каково же теперь реальное место атомной энергетики в жизни общества? Каковы ее перспективы?
Сегодня разговор о проблемах атомной энергетики будет явно неполным, если не исследовать экологические последствия радиоактивного загрязнения. Общество интересуют последствия широкого строительства АЭС, их влияние на природу и человека. Проблемы атомной энергетики и будут рассмотрены на сегодняшней пресс-конференции.
1 вопрос. Долгое время о научно-техническом прогрессе говорили, “не замечая” негативных явлений. Показательна ситуация с атомной энергетикой. Много лет обществу настойчиво внушалось мысль, что без нее дальнейшее развитие цивилизации невозможно. После чернобыльской аварии в общественном мнении наметился резкий крен в обратную сторону. С момента катастрофы прошло более 20 лет. Видимо, сегодня уже можно трезво оценить место атомной энергетики в нашей жизни, ее перспективы?
Член-корреспондент РАН. Сегодня около 15% энергии, вырабатываемой на нашей планете, приходится на атомные электростанции. Больше всего электроэнергии на АЭС вырабатывают США, Франция, Япония, ФРГ, Россия, Канада. Но средний показатель дает лишь общее представление о сложившейся в мире ситуации. Есть государства, в которых производство энергии на АЭС выражается очень значительными цифрами: например, во Франции оно достигает примерно 70% общей выработки. И никаких изменений в сторону уменьшения там не предвидится. Наоборот, население очень трезво оценивает вопросы, связанные с развитием атомной энергетики, справедливо рассматривая свои АЭС как стимулятор хозяйственной жизни.
Но вместе с тем существуют государства, принявшие решение о полном прекращении строительства новых АЭС: Швеция, Италия. Кто прав? Однозначного ответа, по-моему, здесь вообще нет. Показательна в этом отношении позиция США. Прекратив строительство новых АЭС, там широко развернули научно-исследовательские и конструкторские работы в области атомной энергетики. Таким образом, создается хороший задел, чтобы в нужный момент активно приступить к развитию атомной энергетики на качественно ином уровне.
2 вопрос. Если говорить о позиции США, надо вспомнить, наверно, и такой факт. В 1979 году на атомной электростанции “Три Майл Айленд” (Пенсильвания) произошли события, расцененные тогда специалистами как “наиболее серьезная авария, когда-либо имевшая место в ядерной энергетике”. Но хотелось бы обратить внимание на то, что уже в 1978 году, то есть до аварии, в США не было сделано ни одного нового заказа на строительство АЭС, а позже вообще прекращено их строительство. Значит, уже тогда предвидели серьезные последствия использования ядерной энергии?
Географ. Действительно, в США еще до аварии в Пенсильвании выдвинутые гарантии безопасности подверглись серьезному обсуждению. Особую озабоченность вызывали системы аварийного охлаждения активной зоны, поскольку на работающих легководных реакторах они ни разу не испытывались по полной схеме. Поведение таких систем в экстремальной ситуации описывалось на основе методов математического моделирования. А они были далеки от совершенства. На “Три Майл Айленд”, кстати, такие испытания к моменту аварии так и не провели.
Согласен, отношение к атомной энергетике в мире начало меняться еще до крупных аварий. Пока она занимала скромное место в мировом топливно-энергетическом комплексе, целый ряд обстоятельств, связанных с ее развитием, оставался незамеченным или казался не столь существенным. Когда же вклад атомной энергетики стал довольно весомым, выявились некоторые особенности, заставляющие более трезво подойти к ее перспективам. Но и тогда выбранный путь в целом сомнений не вызвал. Первый заметный спад темпов развития атомной энергетики был все-таки связан с аварией в Пенсильвании. Второй, затронувший уже энергетику всего мира, начался после трагедии в Чернобыле в 1986 году.
3 вопрос. Что же произошло в Чернобыле?
Физик-атомщик. Я считаю, что произошло почти невероятное наслоение неверных эксплуатационных решений, усугубленное некоторыми конструктивными недостатками, что привело к разгону цепного процесса, расплавлению активной зоны и к взрыву. В Чернобыле pеактоp 4-го энергоблока был серьезно поврежден в результате резкого скачка мощности, возникшего во время планового его выключения. Реактор находился в бетонной оболочке и был оборудован системой аварийного расхолаживания и другими современными системами безопасности. Трудно было предположить, что при выключении реактора может произойти резкий скачок мощности и газообразный водород, образовавшийся в реакторе после такого скачка, смешавшись с воздухом, взорвется так, что разрушит здание реактора. В результате аварии погибло более 30 человек, более 200000 человек в Киевской и соседних областях получили большие дозы радиации, был заражен источник водоснабжения Киева. На севере от места катастрофы – прямо на пути облака радиации – находились обширные Припятские болота, имеющие жизненно важное значение для экологии Беларуси, Украины и западной части России.
АЭС – слишком ответственный объект, он должен быть сконструирован так, чтобы обладать “внутренней” безопасностью, аварийные ситуации не должны приводить к расплавлению активной зоны. Только тогда нам удастся избежать новых трагедий. Конечно, промышленный выпуск подобного оборудования – дело непростое, дорогостоящее и требует немало времени. Но пути решения этой технической задачи достаточно ясны. И уже в начале XXI века планируется оснащение всех строящихся АЭС реакторами нового поколения.
4 вопрос. Добыча урана, процессы обогащения, производство тепловыделяющих элементов, захоронение радиоактивных отходов – тоже элементы атомной энергетики. Проблемы, связанные с ними, существуют. А как они решаются?
Химик. Давайте подробно рассмотрим какой-нибудь один вопрос, например, захоронение радиоактивных отходов. Насколько мне известно, эта проблема вызывает наиболее пристальный интерес. Хочу внести ясность: отходы образуются не только на АЭС. Их дает вся атомная промышленность: и добыча, и переработка сырья, и применение радиоактивных изотопов в медицине, биологии, промышленности. Сама технология выделения радиоактивных отходов, их концентрирование, прессование, заключение в цементные, битумные или стеклянные блоки – это целая отрасль атомной промышленности. Еще более сложной и дорогостоящей является технология сжигания, позволяющая уменьшить объем отходов в 20-100 раз. И чем дальше входим мы в атомный век, тем больше будет отходов. Наступает момент, когда накопившиеся отходы надо куда-то девать. Наиболее распространенной является технология прессования: все тепловыделяющие элементы с высокой радиоактивностью скручивают в жгут, чтобы они занимали меньше места, затем такой жгут помещается в контейнер, заливается свинцом, закрывается крышкой и заваривается. Получается некая герметичная капсула, предназначенная почти для вечного хранения.
– Но ведь металл подвержен коррозии?
Капсула делается из меди. Этот металл очень слабо подвержен коррозии, а потому контейнер может простоять без изменений сотни и даже тысячи лет. Когда же в металле начнут возникать свищи и герметичность нарушится, содержимое капсулы будет уже не опасно. За столь долгий срок радиоактивность отходов успеет снизиться до приемлемого уровня.
– А где хранить такие контейнеры?
Химик. Да, это тоже достаточно сложный вопрос. На первых порах подходящим местом казалось дно океана. В некоторых странах успели забросить туда довольно много контейнеров. Но теперь такое решение проблемы считают неперспективным. Среди разных способов размещения радиоактивных отходов отдается предпочтение соляным шахтам. Известно, что соль хорошо растворима в воде. А поэтому, столкнувшись с большими соляными залежами можно уверенно сказать: они очень долгое время (сотни лет) не контактировали с водой. А значит, этого не должно произойти в будущем. Кроме того, теплота, выделяемая радиоактивными отходами, вызывает пластическую текучесть соли, она оплавит контейнер. А это – дополнительная защита.
Ведущий. Давайте все-таки вернемся к аварии на Чернобыльской АЭС, ведь прошло более 20 лет со дня аварии, и за это время накопился огромный материал, позволяющий говорить об экологических последствиях радиоактивного загрязнения. В чем же они, эти последствия для природы и человека? Чтобы представить последствия аварии, необходимо знать географическое положение и особенности природы той территории, где расположена АЭС. На правах ведущего этой пресс-конференции мне хочется задать этот вопрос присутствующему здесь географу.
Географ. Чернобыльская АЭС расположена на территории Украины на востоке большого региона, именуемого белорусско-украинским Полесьем, на берегу реки Припяти, впадающей в реку Днепр. Места в основном равнинные, с относительно плоским рельефом, с очень небольшим уклоном поверхности в сторону реки и ее притоков.