Кроме того, в ходе данной лабораторной работы готовятся закаленные образцы для проведения следующей лабораторной работы – «Отпуск закаленной углеродистой стали». Производится закалка 3-4 образцов одной марки стали, которые будут подвергнуты на следующем занятии отпуску при различных температурах.
Все сведения о результатах проведенного эксперимента сводятся в таблицу 2.
Таблица 2
№ п/п | Марка стали | Режим закалки | Твердость, НRС | Структура | ||
Темпе-ратура нагрева, °С | Время нагрева, мин. | Среда охлаждения, °С/c |
По результатам работы студенты подгруппы строят следующие графики:
а) зависимость твердости стали от скорости охлаждения (принимая скорость охлаждения: в воде – 600 °С/с, в масле – 150 °С/с, на воздухе –
30 °С/с);
б) зависимость твердости закаленной стали от содержания углерода.
Содержание отчета
1. Название и цель работы.
2. Краткие сведения о выборе оптимальных температур закалки и скорости охлаждения углеродистых сталей.
3. Таблица с данными по твердости сталей до и после термообработки, графики по результатам работы.
4. Выводы по проделанной работе.
Контрольные вопросы
1. В каком температурном интервале образуется сорбит при изотермическом превращении аустенита?
2. К чему приводит повышение температуры нагрева доэвтектоидной стали под закалку от (Ас1 + 50°) до (Ас3 + 50°)?
3. Какую решетку имеет мартенсит после закалки?
4. С какой целью проводят закалку стали?
5. Чем отличается перлит эвтектоидной стали от сорбита?
6. От чего зависит степень дисперсности (размер зерна) продуктов перлитного превращения?
7. Почему мартенсит имеет тетрагональную решетку?
8. По какому механизму превращения образуется структура троостит?
9. От чего зависит температура нагрева стали под закалку?
10. В чем основное отличие мартенсита от аустенита, из которого он образовался?
11. Чем отличается структура стали У12 после закалки от температуры немного выше Ас1 от структуры этой же стали после закалки от температуры выше Ас3?
12. Чем отличается сорбит от троостита?
13. Как влияет повышение содержания углерода в доэвтектоидной стали на температуру нагрева стали под закалку?
14. Что является обязательным результатом закалки?
15. Каков механизм перлитного превращения?
16. От чего зависит закаливаемость стали (твердость стали после закалки)?
17. Как называется пересыщенный твердый раствор углерода в a-железе?
18. Как изменяются свойства закаленной стали при увеличении содержания углерода до 0,8 %?
19. Чем объясняется высокая твердость и прочность закаленной стали?
20. Объясните, почему для конструкционных сталей не применяют закалку от температур несколько выше Ас1.
21. Почему при закалке необходимо охлаждать сталь со скоростью выше критической?
22. Что такое критическая скорость охлаждения?
23. Что представляет собой С-образная диаграмма?
24. Чем объясняется устойчивость и неустойчивость аустенита в различных температурных интервалах?
25. Чем отличается мартенситное превращение от перлитного?
26. По какому механизму образуется мартенсит?
ЛАБОРАТОРНАЯ РАБОТА № 9
ОТПУСК ЗАКАЛЕННОЙ УГЛЕРОДИСТОЙ СТАЛИ
Цель работы
1. Ознакомиться с процессами, происходящими при отпуске закаленной стали.
2. Изучить влияние температуры нагрева закаленной стали на твердость.
Оборудование и материалы для выполнения работы
1. Нагревательные печи с автоматическими приборами регулирования температуры;
2. Твердомеры Роквелла с алмазными наконечниками;
3. Закаленные образцы углеродистых конструкционных и инструментальных сталей.
Порядок выполнения лабораторной работы
1. Перед выполнением лабораторной работы необходимо ознакомиться с основными теоретическими положениями.
2. Выполнить в соответствии с заданием экспериментальную часть.
3. Провести анализ полученных результатов и сделать выводы по результатам работы всей подгруппы.
Основные положения
Как было установлено в лабораторной работе «Закалка углеродистых сталей», закаленные стали имеют высокие твердость и прочность, но очень низкие пластические свойства. То есть, сталь в закаленном состоянии очень хрупка и ненадежна в эксплуатации. Причиной высокой твердости и хрупкости является пересыщение твердого раствора на основе a-Fe углеродом, искажение его кристаллической решетки и появление дислокаций, компенсирующих эти искажения. Для изменения таких свойств стали применяют следующую обязательную операцию термообработки – отпуск. Отпуск – это нагрев закаленной стали ниже критических температур, с целью придания стали необходимых эксплуатационных свойств и уменьшения внутренних напряжений.
Пересыщенный твердый раствор углерода в a-Fe (мартенсит) обладает большим запасом свободной энергии, и поэтому не является стабильным. Следовательно, в закаленной стали должны протекать процессы, приводящие систему к более устойчивому состоянию, т. е. углерод должен выделяться из решетки мартенсита. Эти процессы идут и при комнатной температуре, но с бесконечно малой скоростью. При нагреве закаленной стали скорость диффузии увеличивается, и чем выше температура, тем выше подвижность атомов углерода. Таким образом, происходит распад пересыщенного твердого раствора с образованием равновесных фаз: карбидов и феррита. Рассмотрим последовательно этапы распада мартенсита при нагреве.
При нагреве до 80 °С скорость распада мартенсита ввиду малой подвижности атомов настолько мала, что заметных изменений в строении закаленной стали не наблюдается даже с применением весьма точных методов исследования.
При более высоких температурах нагрева (до 160-180 °С) происходит выделение углерода из решетки мартенсита и образование очень мелких карбидов, связанных с мартенситом. Уменьшение концентрации углерода в твердом растворе снижает тетрагональность решетки мартенсита, поэтому твердость и хрупкость стали уменьшаются. Однако образующиеся очень мелкие карбиды оказывают сопротивление движению дислокаций под действием приложенных нагрузок, поэтому прочность почти не снижается.
Процесс распада мартенсита завершается при нагреве до температур
300-350 °С. Чем выше температура, тем более интенсивно происходит распад, так как скорость диффузии углерода возрастает. Мартенсит превращается в мягкий феррит, карбиды немного укрупняются, однако все еще остаются мелкими и являются препятствием для движения дислокаций. Сталь с такой структурой имеет высокие прочностные и пластические характеристики, особенно высокий предел текучести.
При температурах выше 450-500 °С идет процесс укрупнения частиц карбидов, они приобретают округлую форму. Первый процесс называется коагуляцией, второй – сфероидизацией. Структура будет состоять из зерен феррита и крупных, сферической формы, карбидов. Сталь обладает высокой вязкостью и высокими пластическими свойствами при достаточной прочности.
В зависимости от процессов, происходящих при отпуске, и от изменений структуры и свойств (рис. 1) различают три вида отпуска:
1) низкотемпературный отпуск – от 160 до 200 °С;
2) среднетемпературный отпуск – от 350 до 450 °С;
3) высокотемпературный отпуск – от 500 до 600 °С.
Низкий (низкотемпературный) отпуск применяется для деталей, от которых требуются высокие твердость и износостойкость. Низкий отпуск назначается для повышения вязкости и пластичности стали без заметного снижения твердости. Этот отпуск применяется, в основном, для режущих и мерительных инструментов. При таком отпуске получается структура, состоящая из менее напряженного, чем после закалки, мартенсита и очень мелких карбидов. Такая структура называется мартенсит отпуска.
Средний (среднетемпературный) отпуск применяется для изделий, от которых требуется высокие упругие свойства. Мелкие кристаллы цементита игольчатой формы, образующиеся при таком отпуске, являются большим препятствием для дислокаций, что обеспечивает высокую упругость и прочность стали. В результате отпуска у стали сильно повышается предел текучести и незначительно, снижается предел прочности. Структура, получаемая при среднем отпуске, называется троостит отпуска. Она состоит из мелких зёрен феррита и игольчатых кристаллов цементита. Такому отпуску подвергают пружины, рессоры, торсионы и другие детали, которые работают при знакопеременных нагрузках и должны быстро восстанавливать свою форму после деформации. Обычно для изготовления упругих элементов используют стали с содержанием углерода от 0,5 до 0,7 %, как углеродистые, так и легированные. Эти конструкционные стали выделены в особую группу рессорно-пружинных сталей.
Высокий (высокотемпературный) отпуск применяют для ответственных деталей машин с высокой надёжностью, испытывающих при эксплуатации сложные виды нагружения: статические, ударные и знакопеременные нагрузки. Структура после высокого отпуска состоит из более крупных зерен феррита и довольно крупных кристаллов цементита округлой формы и называется сорбит отпуска. Высокий отпуск обеспечивает максимальную пластичность и ударную вязкость в сочетании с достаточной прочностью.