Смекни!
smekni.com

Методические указания к выполнению лабораторных работ по курсу «Материаловедение» для студентов мсф часть 2 (стр. 7 из 9)

Линия DE на диаграмме показывает предельную растворимость меди в твердом растворе α в зависимости от температуры. С понижением температуры растворимость меди уменьшается с 5,7 % (точка D при 548 °С) до ≤0,2 %
(точка Е при 20 °С). Поэтому при охлаждении доэвтектических сплавов ниже линий ED и DB из твердого раствора α выделяются избыточные атомы меди с образованием частиц СuАl2.

Широкое применение в технике получили деформируемые алюминиевые сплавы – дуралюмины. Это сплавы с содержанием 3-5 % меди в алюминии.


В равновесном (отожженном) состоянии согласно диаграмме (рис. 1) структура дуралюмина состоит из зерен твердого раствора меди в алюминии α и частиц соединения СuАl2 (рис. 2). При этом частицы СuАl2 крупные. Такая структура обеспечивает сплаву хорошую пластичность (d = 18-20 %) при относительно невысоких значениях прочности (sв = 200-220 МПа) и твердости.

Рис. 2 Рис. 3

Если сплав алюминия с 4 % меди со структурой, показанной на рис. 2, нагреть до температур выше линии DE, но ниже AD, то при этом частицы СuАl2 диссоциируют и растворяются в твердом растворе α. Когда этот процесс завершится, структура станет однофазной (рис. 3), и вся медь (в данном случае 4 %) будет находиться в твердом растворе. Если затем сплав быстро охладить, то медь не успеет выделиться из твердого раствора и сохранится в нем после охлаждения. В результате такой обработки сформируется твердый раствор α¢, сильно пересыщенный медью, так как согласно диаграмме состояния при комнатной температуре в этом растворе может содержаться не более 0,2 % меди. В данном случае после обработки в твердом растворе α¢ содержится 4 % меди.

Такой процесс получения пересыщенного твердого раствора α¢ путем нагрева сплава до температур выше линии DE на диаграмме (в однофазную область), выдержки и последующего быстрого охлаждения называется закалкой. В результате закалки формируется твердый раствор замещения, и упрочнение происходит, в основном, за счет искажений кристаллической решетки, обусловленных разными размерами атомов алюминия и меди. Торможение дислокаций за счет этих искажений невелико. Поэтому после закалки значительного упрочнения дуралюмина не происходит – его прочность составляет sВ = 250-270 МПа, однако пластичность возрастает до d = 20-24 %, что позволяет пластически деформировать сплав в этом состоянии.

Для более эффективного упрочнения алюминиевых сплавов их необходимо после закалки подвергать старению – длительной выдержке (от 4 до 6 суток) при комнатной температуре или более короткой выдержке (несколько часов или несколько десятков минут в зависимости от марки сплава) при повышенной температуре (100-180 °С). В первом случае старение называют естественным, а во втором – искусственным.

В процессе старения происходят следующие изменения в структуре закаленного сплава. Поскольку пересыщенный твердый раствор α¢ в закаленном сплаве – структура неравновесная и неустойчивая, при последующей выдержке сплава в течение определенного времени (при комнатной или повышенной температурах) в этом твердом растворе происходит диффузионное перераспределение атомов меди. В результате в отдельных участках сплава образуются обогащенные медью зоны. Постепенно в этих зонах при возрастании концентрации меди формируются дисперсные (очень мелкие) частицы химического соединения с кристаллической решеткой, отличной от гранецентрированной решетки твердого раствора α. На последней стадии этого процесса в дуралюмине формируется соединение, имеющее формулу типа СuАl2. Размер обогащенных медью зон на начальной стадии старения составляет: толщина 5-10 Å, диаметр 40-100 Å. Затем они растут до толщин 40 Å и диаметра ≥ 300 Å.

Формирование в структуре сплава зон с высокой концентрацией меди и дисперсных частиц химического соединения СuАl2 является сильным препятствием для движения дислокаций при пластической деформации и приводит к значительному упрочнению материала (sВ = 400-650 МПа), при незначительном снижении пластичности (d = 10-18 %).

При увеличении температуры и продолжительности искусственного старения дисперсные частицы начинают интенсивно коагулировать и укрупняться. При этом расстояние между ними увеличивается, что облегчает прохождение дислокаций между частицами и приводит к снижению прочности сплава. Поэтому для каждого сплава необходимо выбирать оптимальный режим старения, который должен обеспечивать сохранение в структуре дисперсной упрочняющей фазы СuАl2. Такой механизм упрочнения характерен для всех алюминиевых сплавов, а тип образующегося химического соединения зависит от состава конкретного сплава.

Состав и обозначение деформируемых алюминиевых сплавов,

упрочняемых термической обработкой

Дуралюмины обозначаются буквой Д с цифрами, являющимися условными номерами сплавов, например, Д1, Д6, Д16, Д18 и. т. д. Структурное состояние сплава также может обозначаться в его марке. Если сплав находится в отожженном (мягком) состоянии, после цифр ставится буква М, а если сплав повышенного качества (содержит меньше примесей) – буква А. Для обозначения сплавов, подвергнутых закалке и старению, ставится буква Т («твердый») после естественного старения и Т1 после искусственного старения, например, Д16Т.

При добавлении в сплав цинка и магния (дополнительно к находящимся в нем меди, хрому, марганцу) создаются условия, позволяющие еще значительнее повышать его прочностные свойства термической обработкой. Такие сплавы называют высокопрочными и обозначают буквой В с цифрами, соответствующими номеру сплава.

Некоторые марки и состав алюминиевых сплавов приведены в таблице 1.

Таблица 1

Марка

сплава

Химический состав, % (вес.)

Сu Мn Мg Si Fe Zn Cr Zr

Д1

4,3 0,6 0,6 0,7 0,7 - - -

Д16

4,2 0,6 1,5 0,5 0,5 - - -

Д18

2,6 0,6 0,4 0,5 0,5 - - -

В95

1,7 0,4 2,3 0,5 0,5 6,0 0,2 -

В96

2,3 0,4 2,6 0,5 0,5 8,5 - 0,15

Режимы термической обработки алюминиевых сплавов приведены в таблице 2.

Таблица 2

Марка сплава

Вид термической

обработки

Температура

нагрева, °С

Время

выдержки

Охлажда-ющая среда

Д1, Д16, Д18

Закалка

Старение

500

20-30

0,5-3,0 час.

4-6 суток

Вода

Воздух

В95,В96

Закалка

Старение

470

120-140

0,5-3,0 час.

16-24 час.

Горячая вода

(80-90 °С)

Воздух

Для алюминиевых сплавов данного типа проводят также смягчающий (разупрочняющий) отжиг при 350-430 °С с выдержкой при этих температурах в течение 1-2 часов и последующим медленным охлаждением. При этом в структуре сплава образуются зерна твердого раствора α с крупными частицами химического соединения СuАl2 (в дуралюминах) или MgZn2, CuMgAl2 (в высокопрочных сплавах).

Прессование вызывает структурное упрочнение, так называемый пресс-эффект. Деформируемые алюминиевые сплавы применяются для изготовления изделий пластической деформацией. Это могут быть листы, прутки, заклепки, изделия разных профилей. Из дуралюминов изготавливают обшивку, шпангоуты и лонжероны самолетов, кузова автомобилей, строительные конструкции и т. д.

Содержание отчета

1. Цель работы.

2. Используемые материалы и оборудование.

3. Краткое изложение теоретического материала, видов и обозначения алюминиевых сплавов.

4. Построить графики изменения твердости и провести анализ полученных результатов.

Контрольные вопросы

1. В чем заключается суть упрочняющей термической обработки алюминиевых сплавов?

2. Какую структуру имеет дуралюмин в отожженном состоянии?

3. Какие изменения происходят в структуре алюминиевых сплавов при закалке?

4. Что такое старение, и какие его разновидности Вы знаете?