Министерство образования Российской Федерации
Саратовский государственный технический университет
ИЗУЧЕНИЕ КОНСТРУКЦИИ СВЁРЛ
Методические указания
к выполнению практических работ по курсу
"Резание материалов"
для студентов специальности 120100
всех форм обучения
Одобрено
редакционно-издательским советом
Саратовского государственного
технического университета
Балаково 2008
Цель работы заключается в изучении основных типов сверл, зенкеров разверток и практическом освоении методики контроля их основных геометрических и конструктивных параметров,Содержание РАБОТЫ
1.Изучить основные типы сверл, конструктивные элементы и геометрические параметры сверл.
2. Освоить контрольно-измерительные приборы.
3. Измерить конструктивные элементы и геометрические параметры инструментов.
4. Начертить эскизы изучаемых инструментов.
5. Занести полученные данные в протокол отчета.
Быстрорежущие спиральные сверла
Назначение и типы. Сверло представляет собой режущий инструмент для обработки отверстий в сплошном материале либо для рассверливания отверстий при двух одновременно происходящих движениях — вращении детали или сверла вокруг его оси и поступательном движении подачи вдоль оси.
В промышленности применяются следующие основные типы сверл: спиральные, перовые, специальные для глубоких отверстий, головки для кольцевого сверления, центровочные.
Наиболее широкое распространение получило спиральное (винтовое) сверло для сверления отверстий: а) не требующих дополнительной обработки; б) под зенкерование или растачивание; в) под развертывание; г) под нарезание резьбы метчиком.
Спиральные сверла позволяют обеспечить обработку отверстий квалитетов точности 11-12 с шероховатостью поверхности Rz = 20...80 мкм. Сверла изготавливаются из быстрорежущих сталей, твердых сплавов и сверхтвердых инструментальных материалов. Основные типы и размеры спиральных сверл стандартизованы. В ГОСТ 885-77 приведены рекомендации по выбору диаметров сверл в зависимости от назначения.
Конструктивные элементы. Сверло состоит из рабочей части, шейки и хвостовика (рис. 5.1). Конический или цилиндрический хвостовик служит для закрепления сверла в шпинделе станка, удлинителе или патроне. Для сверл диаметром свыше 6 мм хвостовик чаще всего имеет коническую форму и заканчивается лапкой. Лапка предназначена для выбивания сверла из конического отверстия.
Шейка — промежуточная часть между хвостовиком и рабочей частью сверла. Она имеет несколько меньший диаметр, чем рабочая часть.
Рабочая часть состоит из режущей и направляющей частей. Условия работы сверла определяются главным образом конструкцией его режущей части. Она имеет два лезвия, которые соединены между собой сердцевиной, расположенной вдоль оси сверла. Размер сердцевины соответствует диаметру окружности, касательной к поверхности канавок, и может увеличиваться по направлению к хвостовику для большей прочности и жесткости сверла. Главные задние поверхности лезвий образуются при затачивании сверла по конической, винтовой или плоской поверхности. Передние поверхности лезвий сверла имеют винтовую форму, по ним стружка транспортируется из зоны резания. Пересечения передних поверхностей (винтовых канавок) с главными задними поверхностями образуют главные режущие кромки, которые должны быть расположены симметрично относительно оси сверла. При пересечении двух задних поверхностей на сердцевине образуется поперечная кромка, или перемычка.
Рис. 1. Конструктивные элементы спирального сверла: 1 — рабочая часть; 2 — режущая часть; 3 — шейка; 4 — хвостовик; 5 — лапка; 6 — зуб; 7 — поперечная кромка; 8 — поводок; 9 — стружечная канавка; 10 — задняя поверхность; 11 — режущая кромка; 12 — ленточка; 13 — кромка ленточки; 14 — передняя поверхность; 15 — спинка зуба; 16 —
сердцевина
Направляющая часть обеспечивает ориентацию сверла в кондукторной втулке или обрабатываемом отверстии и служит резервом для образования режущей части при переточках сверла. Направляющая часть сверла для уменьшения трения соприкасается с отверстием только по шлифованным винтовым ленточкам, которые расположены по краю винтовой канавки. Ленточки шлифуются по окружности с очень малой конусностью по направлению к хвостовику. Они являются вспомогательными задними поверхностями лезвий сверла. Пересечения передних поверхностей (винтовых канавок) со вспомогательными задними поверхностями (ленточками) образуют вспомогательные режущие кромки.
Геометрические параметры. Углы в плане сверла, как и для всех инструментов, рассматриваются в основной плоскости. Главным углом в плане φ называется угол между плоскостью резания и рабочей плоскостью. От угла φ зависит ширина и толщина срезаемого слоя, условия теплоотвода, прочность режущей части сверла.
N-N |
Для упрощения измерения углов на сверлах указывается не φ а 2φ. Величину угла 2φ (рис. 5.2) назначают в зависимости от свойств обрабатываемого материала (табл. 5.1).
Рис..2. Геометрия спирального сверла
В основной плоскости рассматриваются также вспомогательные углы в плане φ1. Чтобы избежать защемления сверла в просверленном отверстии, диаметр рабочей части сверла уменьшают по направлению к хвостовику, т.е. выполняют обратную конусность в пределах 0,03...0,15 мм на 100 мм длины сверла.
Вспомогательным углом в плане φ1 называется угол между проекцией вспомогательной режущей кромки (ленточки) на основную плоскость сверла и рабочей плоскостью. Он обеспечивается за счет обратного конуса и его величина не превышает 10'. Угол φ1 можно определить по следующей формуле:где D, D1 — диаметр сверла соответственно в начале и в конце направляющей части; L — длина направляющей части.
Таблица 5.1
Значение угла 2ф при вершине сверла из быстрорежущей стали, град.
Обрабатываемый материал | Угол 2ф |
Сталь, чугун, твердая бронза | 116...120 |
Латунь, мягкая бронза | 130 |
Алюминий и его сплавы | 140 |
Нержавеющие и жаропрочные стали, титановые сплавы | 120...140 |
Углом наклона винтовой канавки ω называется угол между осью сверла и касательной к винтовой линии ленточки. Винтовая поверхность канавки сверла состоит из семейства винтовых линий с одинаковым шагом Н различным углом наклона ωx. Развернув на плоскость винтовые линии, которые берут начало в различных точках режущей кромки х (рис. 5.3), можно для указанных точек определить величину угла ω:
где πD, πDx— развертки окружностей, на которых лежат точки режущей кромки.
В общем случае
Для всех винтовых линий канавки шаг одинаковый. Следовательно, чем меньше D, на котором расположена точка режущей кромки, тем меньше угол ω. Угол ω выбирают в зависимости от диаметра сверла D, свойств обрабатываемого материала, глубины просверливаемого отверстия и других факторов. Сверла изготавливаются с углами ω = 15...60°.
Рис. 3. Углы наклона винтовых линий ω в различных точках режущей кромки х спирального сверла
Наклон винтовой стружечной канавки — это наклон передней поверхности сверла в продольном направлении. Следовательно, это продольный передний угол сверла, т.е. ω = γпр. Но для характеристики процесса сверления необходимо знать передний угол в главной секущей плоскости, который определяет условия резания.
Главная секущая плоскость N-N перпендикулярна к главной режущей кромке (см. рис. 5.2).
Главным передним углом γ называется угол между касательной к передней поверхности в рассматриваемой точке режущей кромки и нормалью в той же точке к поверхности резания. Поскольку угол наклона винтовой канавки, являющейся передней поверхностью сверла, уменьшается при приближении к оси сверла, то и передний угол для разных точек режущей кромки будет переменным. Он тем меньше, чем ближе рассматриваемая точка к оси сверла (см. рис. 5.3). Передний угол γ в плоскости N—N можно найти из упрощенной формулы:
Более точные значения угла γNx в любой точке режущей кромки определяются по формуле, полученной П.Р.Родиным [17]: