Смекни!
smekni.com

1. Математическое описание связи. Модель парной регрессии (стр. 1 из 4)

Содержание:

Введение.................................................................................................................3

1. Математическое описание связи. Модель парной регрессии.......................6

1.1. Линейная регрессия сущность, оценка параметров...............................11

1.2. Определение тесноты связи и оценка существенности

уравнения регрессии.................................................................................13

1.3. Виды нелинейных регрессионных моделей, расчет их

параметров.................................................................................................18

2. Множественная регрессия и корреляция.......................................................20

Заключение...........................................................................................................23

Список использованной литературы.................................................................25

Введение.

Величины, характеризующие различные свойства объектов, могут быть независимыми или взаимосвязанными. Различают два вида зависимостей между величинами (факторами): функциональную и статистическую.

При функциональной зависимости двух величин значению одной из них обязательно соответствует одно или несколько точно определенных значений другой величины. Функциональная связь двух факторов возможна лишь при условии, что вторая величина зависит только от первой и не зависит ни от каких других величин. Функциональная связь одной величины с множеством других возможна, если эта величина зависит только от этого множества факторов. В реальных ситуациях существует бесконечно большое количество свойств самого объекта и внешней среды, влияющих друг на друга, поэтому такого рода связи не существуют, иначе говоря, функциональные связи являются математическими абстракциями. Их применение допустимо тогда, когда соответствующая величина в основном зависит от соответствующих факторов.

При исследовании многие параметры следует считать случайными, что исключает проявление однозначного соответствия значений. Воздействие общих факторов, наличие объективных закономерностей в поведении объектов приводят лишь к проявлению статистической зависимости. Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения других (другой), и эти другие величины принимают некоторые значения с определенными вероятностями. Функциональную зависимость в таком случае следует считать частным случаем статистической: значению одного фактора соответствуют значения других факторов с вероятностью, равной единице. Однако на практике такое рассмотрение функциональной связи применения не нашло.

Более важным частным случаем статистической зависимости является корреляционная зависимость, характеризующая взаимосвязь значений одних случайных величин со средним значением других, хотя в каждом отдельном случае любая взаимосвязанная величина может принимать различные значения.

Если же у взаимосвязанных величин вариацию имеет только одна переменная, а другая является детерминированной, то такую связь называют не корреляционной, а регрессионной. Например, при анализе скорости обмена с жесткими дисками можно оценивать регрессию этой характеристики на определенные модели, но не следует говорить о корреляции между моделью и скоростью.

При исследовании зависимости между одной величиной и такими характеристиками другой, как, например, моменты старших порядков (а не среднее значение), то эта связь будет называться статистической, а не корреляционной.

Корреляционная связь описывает следующие виды зависимостей:

причинную зависимость между значениями параметров, "зависимость" между следствиями общей причины.

Корреляционная зависимость определяется различными параметрами, среди которых наибольшее распространение получили показатели, характеризующие взаимосвязь двух случайных величин (парные показатели): корреляционный момент, коэффициент корреляции.

Одной из типовых задач обработки статистических данных является определение количественной зависимости показателей качества объекта от значений его параметров и характеристик внешней среды. Примером такой постановки задачи является установление зависимости между временем обработки запросов к базе данных и интенсивностью входного потока. Время обработки зависит от многих факторов, в том числе от размещения искомой информации на внешних носителях, сложности запроса. Следовательно, время обработки конкретного запроса можно считать случайной величиной.

Но вместе с тем, при увеличении интенсивности потока запросов следует ожидать возрастания его среднего значения, т.е. считать, что время обработки и интенсивность потока запросов связаны корреляционной зависимостью.

Постановка задачи регрессионного анализа формулируется следующим образом .

Имеется совокупность результатов наблюдений. Требуется: установить количественную взаимосвязь между показателем и факторами. В таком случае задача регрессионного анализа понимается как задача выявления такой функциональной зависимости y* = f(x2 , x3 , …, xт), которая наилучшим образом описывает имеющиеся экспериментальные данные.

Допущения:

- количество наблюдений достаточно для проявления статистических закономерностей относительно факторов и их взаимосвязей;

- обрабатываемые ЭД содержат некоторые ошибки (помехи), обусловленные погрешностями измерений, воздействием неучтенных случайных факторов;

- матрица результатов наблюдений является единственной информацией об изучаемом объекте, имеющейся в распоряжении перед началом исследования.

Функция f(x2 , x3 , …, xт), описывающая зависимость показателя от параметров, называется уравнением (функцией) регрессии. Термин "регрессия" (regression (лат.) – отступление, возврат к чему-либо) связан со спецификой одной из конкретных задач, решенных на стадии становления метода, и в настоящее время не отражает всей сущности метода, но продолжает применяться.

1. Математическое описание связи. Модель парной регрессии.

Любой показатель в статистике, экономике, математике и т.д. практически зависит от бесконечного количества факторов. Однако лишь ограниченное количество факторов действительно существенно воздействуют на исследуемый показатель. Доля влияния остальных факторов столь незначительна, что их игнорирование не может привести к существенным отклонениям в поведении исследуемого объекта. Выделение и учет в модели лишь ограниченного числа реально доминирующих факторов является важной задачей качественного анализа, прогнозирования и управления ситуаций.

Если в естественных науках большей частью имеют дело со строгими (функциональными) зависимостями, при которых, еще раз повторюсь, каждому значению одной переменной соответствует единственное значение другой, то между экономическими переменными, в большинстве случаев, таких зависимостей нет. Поэтому в экономике имеют дело с корреляционными зависимостями.

В зависимости от количества факторов, включенных в уравнение регрессии, принято различать простую (парную) и множественную регрессии.

Простая регрессия представляет собой регрессию между двумя переменными y и x, т.е. модель вида

y = f(x),

где у – зависимая переменная (результативный признак);

х – независимая, или объясняющая, переменная, (признак – фактор).

Строится простая (парная) регрессия в случае, когда на результативный показатель, влияет единственный фактор.

Множественная регрессия соответственно представляет собой модель вида:

y=f(x1, x2,…,xk), где хi– признак – факторы.

Рассмотрим простейшую линейную модель парной регрессии:

y = a+bx+ε (2.1)

Величина y, рассматриваемая как зависимая переменная, состоит из двух составляющих: неслучайной составляющей, а+bх и случайного члена ε.

Случайная величина ε называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения.

Причин существования случайной составляющей несколько.

1. Не включение объясняющих переменных. Соотношение между y и x является упрощением. В действительности существуют и другие факторы, влияющие на y, которые не учтены в (2.1). Влияние этих факторов приводит к тому, что наблюдаемые точки лежат вне прямой у = а+bх.

Часто встречаются факторы, которых следовало бы включить в регрессионное уравнение, но невозможно этого сделать в силу их количественной неизмеримости. Возможно, что существуют также и другие факторы, которые оказывают такое слабое влияние, что их в отдельности не целесообразно учитывать, а совокупное их влияние может быть уже существенным. Кроме того, могут быть факторы, которые являются существенными, но которые из-за отсутствия опыта таковыми не считаются. Совокупность всех этих составляющих и обозначено в (2.1) через ε.

2. Агрегирование переменных. Рассматриваемая зависимость (2.1) – это попытка объединить вместе некоторое число микроэкономических соотношений. Так как отдельные соотношения, имеют разные параметры, попытка объединить их является аппроксимацией. Наблюдаемое расхождение приписывается наличию случайного члена ε.

3. Выборочный характер исходных данных. Поскольку исследователи чаще всего имеет дело с выборочными данными при установлении связи между у и х, то возможны ошибки и в силу неоднородности данных в исходной статистической совокупности. Для получения хорошего результата обычно исключают из совокупности наблюдения с аномальными значениями исследуемых признаков. И в этом случае результаты регрессии представляют собой выборочные характеристики.

4. Неправильная функциональная спецификация. Функциональное соотношение между у и х математически может быть определено неправильно. Например, истинная зависимость может не являться линейной, а быть более сложной. Следует стремиться избегать возникновения этой проблемы, используя подходящую математическую формулу, но любая формула является лишь приближением истинной связи у и х и существующее расхождение вносит вклад в остаточный член.