Смекни!
smekni.com

«Применение пакета Mathematica для вычисления интегралов» (стр. 2 из 6)

Программа дает возможность отображать математические символы с достаточно высоким полиграфическим качеством в тексте на экране, в командах, а также при выводе на печать. Увеличено количество опций. Возможно создание гипертекстовых связей.

Рабочую тетрадь можно сохранять в HTML-формате, а также в формате полиграфического языка LaTex и некоторых других.

Усовершенствована и расширена система подсказок, имеется интерактивный доступ к полному тексту электронной версии документации, которая состоит из инструкции пользователя, справочника по стандартным дополнениям, учебника для начинающих и демонстрационных файлов.

Меню окна справки очень хорошо продумано, что позволяет получить информацию различными путями. Можно получить справку по интересующей теме или функции, а также просмотреть текст всех документов, содержащих введенное ключевое слово.

Аналитические расчеты.

Умение проводить аналитические расчеты — одно из главных достоинств этой программы, автоматизирующей математические расчеты. Mathematica умеет преобразовывать и упрощать алгебраические выражения, дифференцировать и вычислять определенные и неопределенные интегралы, вычислять конечные и бесконечные суммы и произведения, решать алгебраические и дифференциальные уравнения и системы, а также разлагать функции в ряды и находить пределы. Кроме того, Mathematica имеет стандартные дополнения для аналитических расчетов.

Следует заметить, что возможности каждой новой версии программы качественно возрастают. В версии 5.2 программы команда упрощения алгебраических выражений Simplify дополнена значительно более мощной командой FullSimplify, которая позволяет обрабатывать математические выражения, включающие специальные функции.

Расширен спектр математических выражений, для которых аналитически находятся неопределенные и определенные интегралы. Появилась также возможность задавать область изменения параметров в подынтегральных выражениях, что позволяет интегрировать многие выражения, которые в общем случае не имеют первообразной.

Значительно возросло число различных (конечных и бесконечных) сумм и произведений, вычисляемых аналитически, а также аналитически решаемых обыкновенных дифференциальных уравнений и уравнений в частных производных.

Из числа других улучшений можно выделить повышение скорости решения задач линейной алгебры.

Численные методы.

Для тех задач, которые невозможно решить аналитически, Mathematica 5.2 предлагает большое количество эффективных алгоритмов для проведения численных расчетов. Она позволяет находить конечные и бесконечные суммы и произведения, вычислять интегралы, решать алгебраические и дифференциальные уравнения и системы, задачи оптимизации (линейного программирования, нахождения экстремумов функций), а также задачи математической статистики. При численном решении математических задач наряду с правильностью алгоритмов расчета особую роль играет точность вычислений.

В Mathematica 5.2 реализован адаптивный контроль точности, основанный на выборе внутренних алгоритмов, позволяющих ее максимизировать. В этой версии программы повышена эффективность многомерной интерполяции, оптимизированы алгоритмы численного решения дифференциальных уравнений. Оптимизированы алгоритмы нахождения экстремумов. Поддерживается арифметика интервалов.

Осуществлен независимый от конкретной компьютерной платформы механизм ввода и вывода числовых данных без потери точности.

Математические функции.

Мathernatica 5.2 позволяет включать в расчеты все известные элементарные функции, а также сотни специальных встроенных функций. Разумеется, пользователь программы может вводить и свои функции как для применения в течение одного сеанса работы так и для постоянного использования. В новой версии 5.2 добавлены интегралы Френеля интегральные гиперболические синус и косинус, обратная функция ошибок, гаммa и бета функции, дополнительная функция Вейерштрасса, эллиптические и родственные с ними функции. Введены числа и полиномы Фибоначчи.

Графика и звук.

Mathernatica позволяет строить двух и трехмерные графики различных типов в виде точек и линии на плоскости, поверхностей, а также контурные, градиентные (dencity plot), параметрические. Имеется большое количество опций оформления и настройки, например изменение подсветки, цвета, размеров и точки наблюдения. Mathematica выполняет построение графика в три этапа. На первом создается множество графических примитивов, на втором они преобразуются в независимое от вычислительной платформы описание на языке PostScript, а на третьем это описание переводится в графический формат для той системы, на которой установлена Mathematicа. Если первые два этапа осуществляет ядро программы, то последний — интерфейсный процессор. Mathematica позволяет также строить серии картинок, которые могут быть воспроизведены как анимация. Программа содержит функции, позволяющие создавать и воспроизводить различные звуки, а также воспринимает и может анализировать некоторые типы стандартных звуковых файлов.

Программирование.

Входной язык Mathematica 5.2 содержит большое количество конструкций, позволяющих для каждой конкретной задачи выбрать оптимальный метод программирования. Помимо обычного процедурного программирования с применением условных переходов и операторов цикла, имеется еще несколько методов:

· основанный на операциях со списками – этот метод использует особенности универсального объекта программы — списка выражений, с которыми можно производить математические операции, как с алгебраическими выражениями, при этом заданные операции выполняются всеми элементами списка;

· основанный на операциях над строками (string-based);

· функционального программирования (functional programming), позволяющий создавать сложные функции и последовательности вложенных функций;

· на базе правил преобразования выражений (rule-based); объектно-ориентированный (object-oriented).

В каждой конкретной программе пользователь может одновременно применять несколько методов или даже все перечисленные. Серьезным недостатком предыдущей версии программы было неэкономное использование памяти компьютера. Для ускорения загрузки уменьшено количество первоначально загружаемых в память функций. Введены новые мощные операторы символьного программирования и усовершенствованные операторы для манипулирования строками. Появилась возможность компилировать вычисляемые выражения и процедуры. При этом скорость вычислений может быть сравнима со скоростью такой же процедуры, написанной на языке Си, или даже выше.

Стандартные дополнения.

Mathematica 5.2 содержит множество стандартных дополнений, включающих подпрограммы (пакеты), значительно расширяющие функциональные возможности в таких областях, как алгебра, аналитические и численные расчеты, графика, дискретная математика, теория чисел и статистика. Стандартные дополнения могут загружаться по мере надобности. Для загрузки пакета используется соответствующее название, включающее имя дополнения и имя пакета из данного дополнения. Рассмотрим подробнее стандартные дополнения.

Алгебра.

В это дополнение входят пакеты, позволяющие задавать различные алгебраические поля и оперировать в них, а также несколько пакетов, расширяющих функциональность программы при оперировании с полиномами и нахождении их корней. В новой версии оно пополнилось пакетами для решения некоторых типов алгебраических неравенств и симметричных полиномов и, кроме того, добавлена Гамильтонова алгебра кватернионов и элементы полей Пигуа.

Вычисления.

Это дополнение содержит пакеты, позволяющие расширять возможности программы при вычислении интегралов, нахождении пределов, решении дифференциальных уравнений и задач линейной алгебры в различных системах координат, а также включает команды преобразования Фурье и Лапласа, обобщенные функции, вариационные методы. В новой версии оно пополнилось пакетом для нахождения полных интегралов и дифференциальных инвариантов нелинейных уравнений в частных производных.

Дискретная математика.

Дополнение предлагает примерно 200 функций для проведения исследований в области комбинаторики и теории графов; вычислительную геометрию, которая содержит несколько геометрических функций для непараметрического анализа данных; пакеты для оперирования с функциями от целых чисел, в частности для решения рекуррентных уравнений, выполнения преобразований.

Графика.

Дополнение включает 21 пакет. Оно значительно расширяет возможности программы при построении графиков и анимации. Введены новые типы: логарифмические графики, графики тел вращения, полярные, контурные, матричные графики, трехмерные параметрические, двух- и трехмерные графики векторных полей, графики неявно заданных функций и др. Появилась возможность отображать ортогональные проекции трехмерных графических объектов на координатные плоскости. Добавлены также функции для графического представления комплексных функций.

Геометрия.

Геометрическое дополнение содержит пакеты, включающие функции для задания параметров правильных многоугольников и многогранников, а также функции, обеспечивающие вращение на плоскости и в пространстве.

Линейная алгебра.

В это дополнение входят функции для создания ортогональных векторных базисов, решения матричных уравнений, разложения матриц и выполнения других операций с матрицами.

Теория чисел.

Функции, относящиеся к теории чисел, широко представлены в ядре программы Mathematica. Дополнение теории чисел расширяет этот список функций. В нее включены пакеты для доказательства простоты чисел, разложения целых чисел на множители. Имеются функции для аппроксимации действительных чисел рациональными и полиномов с действительными корнями полиномами с целыми коэффициентами. Пользуясь дополнениями, можно найти разложение действительного числа в бесконечную дробь. В новой версии появились возможности для нахождения базисных элементов для произвольных алгебраических расширений рациональных чисел.