ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ
Digital signal processing
Тема 4. РАЗНОСТНЫЕ ФИЛЬТРЫ И ФИЛЬТРЫ ИНТЕГРИРОВАНИЯ.
Человечество так старо! Всегда приходится идти по чьим-то стопам.
А. Додэ.
Но люди амбициозны, и всегда пытаются оставить свой след. В любой профессии наследили так, что пора бы уже расчистками старых надежных дорог заняться.
Лариса Ратушная. Уральский геофизик, XX в.
Содержание
Введение.
1. Разностные операторы. Выделение в сигналах шумов. Восстановление утраченных или пропущенных данных. Аппроксимация производных.
2. Интегрирование данных. Алгоритмы интегрирования по формулам трапеций, прямоугольников, Симпсона.
Введение
Основной инструмент проектирования цифровых фильтров – частотный (спектральный) анализ. Частотный анализ базируется на использовании периодических функций синусов и косинусов. По-существу, спектральная характеристика цифрового фильтра – это тонкая внутренняя структура системы, его однозначный функциональный паспорт направленного изменения частотного состава данных, полностью определяющий сущность преобразования фильтром входных данных.
Рассмотрим примеры синтеза и частотного анализа фильтров применительно к известным способам дифференцирования и интегрирования цифровых данных.
4.1. Разностные операторы /24/.
Примеры частотного подхода при анализе разностных операторов.
Разностный оператор 1-го порядка имеет вид:
Dsk = sk+1-sk.
Последовательное n-кратное применение оператора записывается в виде оператора n-го порядка:
Dn(sk) = D[Dn-1(sk)] = Dsk ③ Dn-1(sk) (4.1.1)
k | sk | D(sk) | D2(sk) | D3(sk) | D4(sk) | D5(sk) | D6(sk) |
-7 -6 -5 -4 -3 -2 -1 0 1 | 0 0 0 0 0 0 0 1 0 | 0 0 0 0 0 0 1 -1 0 | 0 0 0 0 0 1 -2 1 0 | 0 0 0 0 1 -3 3 -1 0 | 0 0 0 1 -4 6 -4 1 0 | 0 0 1 -5 10 -10 5 -1 0 | 0 1 -6 15 -20 15 -6 1 0 |
Кq | 2 | 6 | 20 | 70 | 252 | 924 |
Выходные значения импульсной реакции разностных операторов на единичный импульсный сигнал Кронекера приведены в таблице. Ряды последовательных разностей содержат знакопеременные биномиальные коэффициенты. В представленной форме разностные операторы являются каузальными фазосдвигающими (односторонними) фильтрами, но нетрудно заметить, что операторы четных степеней могут быть переведены в симметричную форму сдвигом влево на половину окна оператора.
В последней строке таблицы приводятся коэффициенты усиления дисперсии шумов, значение которых резко нарастает по мере увеличения порядка оператора. Это позволяет использовать разностные операторы с порядком выше 1 для определения местоположения статистически распределенных шумов в массивах данных. Особенно наглядно эту возможность можно видеть на частотных характеристиках операторов.
Подставляя сигнал s(k) = exp(jwk) в (4.1.1) и упрощая, получаем:
Dns(k) = (jn) exp(jwn/2) [2 sin(w/2)]n exp(jwk).
H(w) = (jn) exp(jwn/2) [2 sin(w /2)]n (4.1.2)
Так как модуль первых двух множителей в выражении (4.1.2) равен 1, зависимость коэффициента передачи разностного оператора от частоты определяется вторым сомножителем (2 sin(w/2))n и представлена на рисунке 4.1.1.
Рис. 4.1.1. Разностные фильтры. |
Выделение в сигналах шумов. Как следует из графиков на рис. 4.1.1, разностные операторы подавляют постоянную составляющую сигнала и его гармоники в первой трети интервала Найквиста и увеличивают высокочастотные составляющие сигнала в остальной части интервала тем больше, чем больше порядок оператора. Как правило, эту часть главного интервала спектра сигналов занимают высокочастотные статистические шумы.
Шумы при анализе данных также могут представлять собой определенную информацию, например, по стабильности условий измерений и по влиянию на измерения внешних дестабилизирующих факторов. На рис. 4.1.2 приведен пример выделения интервалов интенсивных шумов в данных акустического каротажа, что может свидетельствовать о сильной трещиноватости пород на этих интервалах. Такая информация относится уже не шумовой, а к весьма полезной информации при поисках и разведке нефти, газа и воды.
Рис. 4.1.2.
Восстановление утраченных данных. Разностные операторы имеют одну особенность: оператор n+1 порядка аннулирует полином степени n, т.е. свертка оператора порядка n+1 с полиномом n-ой степени дает нулевые значения: Dn+1 ③ Pn(k) = 0.
Пример. P2(k) = xk = 1+2k-k2, k = 0,1,2,... xk = 1,2,1,-2,-7,-14,-23,-34,... yk = xk ③ D3=0,0,0,0,...
Эту особенность можно использовать для создания очень простых и достаточно надежных операторов восстановления в массивах пропущенных и утраченных значений или для замены аннулированных при обработке величин (например, явных выбросов).
Если считать, что отрезок данных, содержащий пропуск, является многочленом некоторой степени, то свертка данных с разностным оператором следующего порядка должна быть равна нулю. Так, при аппроксимации данных многочленом третьей степени для любой точки массива должно выполняться равенство:
D4③(sk) = sk-2-4sk-1+6sk-4sk+1+sk+2 = 0.
Интерполяционный фильтр восстановления утраченной центральной точки данных:
sk = (-sk-2+4sk-1+4sk+1-sk+2)/6. (4.1.3)
Соответственно, оператор фильтра восстановления данных h(n) = (-1,4,0,4,-1)/6. Коэффициент усиления шумов s2 = 17/18 = 0.944.
Пример. Фактический отрезок массива данных: xk = {3,6,8,8,7,5,3,1}.
Допустим, что на отрезке был зарегистрирован явный выброс: xk = {3,6,8,208,7,5,3,1}.
Отсчет с выбросом аннулирован. Замена отсчета: x3 = (-x1+4x2+4x4-x5)/6= (-6+32+28-5)/6 » 8.17.
В массиве утрачен 5-й отсчет. Восстановление: x4 = (-x2+4x3+4x5-x6)/6 = (-8+32+20-3)/6 » 6.83.
Рис. 4.1.3. Разностные фильтры. |
Принимая в (4.1.3) k = 0 и подставляя сигнал sk = exp(jwk), получаем частотную характеристику фильтра восстановления данных 4-го порядка:
H(w) = (4 cos w - cos 2w)/3.
Вид частотной характеристики для фильтров восстановления пропущенных данных 4-го и 6-го порядков приведен на рис. 4.1.3. Графики наглядно показывают, что применение разностных интерполяционных фильтров восстановления данных возможно только для сигналов, высокочастотные составляющие которых минимум в три раза меньше частоты Найквиста. Интерполяционные фильтры выше 4-го порядка применять не рекомендуется, т.к. они имеют коэффициент усиления шумов более 1.
На рис. 4.1.4 – 4.1.6 приведены примеры восстановления утраченных данных во входных сигналах оператором 3-го порядка и спектры сигналов в сопоставлении с передаточной функцией оператора восстановления данных.
Рис. 4.1.4. Восстановление незашумленных данных. Рис.4.1.5. Спектры.
Рис. 4.1.6. Восстановление зашумленных данных.
В сигналах, представленных на рисунках, утрачен каждый 10-ый отсчет (например, при передаче данных) при сохранении тактовой частоты нумерации данных. Учитывая, что все значения входных сигналов положительны, индикатором пропуска данных для работы оператора служат нулевые значения. В любых других случаях для оператора восстановления данных необходимо предусматривать специальный маркер (например, заменять аннулированные данные или выбросы определенным большим или малым значением отсчетов).