Смекни!
smekni.com

Тема 2: частотный анализ цифровых фильтров (стр. 1 из 5)

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Тема 2: ЧАСТОТНЫЙ АНАЛИЗ ЦИФРОВЫХ ФИЛЬТРОВ.

Не перестаю удивляться дерзкой гениальности Стефенсона и братьев Черепановых. Как они отважились построить паровоз, не располагая теорией его движения?

Архив Кифы Васильевича (Наука и жизнь, 1984).

Пока нет теории, есть возможность войти в Историю. Бог прославился созданием Евы из ребра Адама без всякого теоретического обоснования. А когда теория есть, можно только влипнуть в какую-нибудь историю.

Лариса Ратушная. Уральский геофизик (XX в.).

Содержание:

Введение.

2.1. Сглаживающие фильтры и фильтры аппроксимации. Фильтры МНК 1-го порядка. Фильтры МНК 2-го порядка. Фильтры МНК 4-го порядка.

2.2. Разностные операторы. Разностный оператор. Восстановление данных. Аппроксимация производных.

2.3. Интегрирование данных.

2.4. Расчет фильтра по частотной характеристике.

Литература.

Введение.

Основной инструмент цифровой фильтрации данных и проектирования цифровых фильтров – частотный анализ (второй распространенный термин – спектральный анализ). Частотный анализ базируется на использовании периодических функций, в отличие от численных методов анализа и математической статистики, где предпочтение отдается полиномам. В качестве периодических используются преимущественно гармонические функции – синусы и косинусы. По-существу, спектральный состав сигналов – это тонкая внутренняя структура данных, которые несет сигнал, и которая практически скрыта в динамическом (графическом) представлении больших множеств данных даже для опытных обработчиков. Точно так же частотная характеристика цифрового фильтра – это его однозначный функциональный паспорт, полностью определяющий сущность преобразования фильтром входных данных.

Однако следует отметить, что хотя сущность фильтрации сигналов состоит именно в направленном изменении частотного состава данных, которые несет сигнал, тем не менее, у начинающих специалистов существует определенное эмоциональное противодействие частотному подходу и его роли в анализе данных. Преодолеть это противодействие можно только одним путем – на опыте убедиться в эффективности частотного подхода.

Рассмотрим несколько примеров частотного анализа фильтров применительно к известным способам обработки данных.

2.1. Сглаживающие фильтры и фильтры аппроксимации /24/.

Предположим, что требуется осуществить сглаживание (регуляризацию, аппроксимацию) по методу наименьших квадратов (МНК) равномерного по аргументу массива данных.

Фильтры МНК 1-го порядка (МНК-1). Простейший способ аппроксимации по МНК произвольной функции s(t) - с помощью полинома первой степени, т.е. функции вида y(t) = A+Bt (метод скользящих средних). В качестве примера произведем расчет симметричного фильтра на (2N+1) точек с окном от -N до N.

Для определения коэффициентов полинома найдем минимум функции приближения (функцию остаточных ошибок). С учетом дискретности данных по точкам tn = nDt и принимая Dt = 1 для симметричного НЦФ с нумерацией отсчетов по n от центра окна фильтра (в системе координат фильтра), для функции остаточных ошибок имеем:

s(A,B) =

[sn - (A+B·n)]2.

Дифференцируем функцию остаточных ошибок по аргументам 'А, В' и, приравнивая полученные уравнения нулю, формируем 2 нормальных уравнения:

(sn-(A+B·n)) º
sn - A
1 - B
n = 0,

(sn-(A+B·n))·n º
n×sn - A
n - B
n2 = 0,

С учетом очевидного равенства

n = 0, результат решения данных уравнений относительно значений А и В:

А =

sn , B =
n×sn/
n2.

Подставляем значения коэффициентов в уравнение аппроксимирующего полинома, переходим в систему координат по точкам k массива y(k+t) = A+B·t, где отсчет t производится от точки k массива, против которой находится точка n = 0 фильтра, и получаем в общей форме уравнение фильтра аппроксимации:

y(k+t) =

sk-n + t
n×sk-n/
n2.

Для сглаживающего НЦФ вычисления производятся непосредственно для точки k в центре окна фильтра (t = 0), при этом:

yk =

sk-n. (2.1.1)

Рис. 2.1.1.

Импульсная реакция фильтра соответственно определяется (2N+1) значениями коэффициентов bn = 1/(2N+1). Так, для 5-ти точечного НЦФ:

h(n) = {0.2, 0.2, 0.2, 0.2, 0.2}.

Передаточная функция фильтра в z-области:

H(z) = 0.2(z-2+z-1+1+z1+z2).

Коэффициент усиления дисперсии шумов:

Kq = Sn h2(n) = 1/(2N+1),

т.е. обратно пропорционален ширине окна фильтра. Зависимость значения Kq от ширины окна приведена на рис. 2.1.1.

Частотная характеристика фильтра (передаточная функция фильтра в частотной области) находится преобразованием Фурье импульсной реакции h(n) (фильтр симметричный, начало координат в центре фильтра) или подстановкой z = exp(-jw) в выражение передаточной функции H(z). И в том, и в другом случае получаем:

H(w) = 0.2[exp(2jw)+exp(jw)+1+exp(-jw)+exp(-2jw)]. (2.1.2)

Можно использовать и непосредственно уравнение фильтра, в данном случае уравнение (2.1.1). Подадим на вход фильтра гармонический сигнал вида sk = exp(jwk). Так как сигнальная функция относится к числу собственных, на выходе фильтра будем иметь сигнал yk = H(w)exp(jwk). Подставляя выражения входного и выходного сигналов в уравнение (2.1.1), получаем:

H(w) exp(jwk) = 0.2

exp(jw(k-n))= 0.2 exp(jwk)
exp(-jwn).

Отсюда, выражение для передаточной функции:

H(w) = 0.2

exp(-jwn) = 0.2[exp(2jw)+exp(jw)+1+exp(-jw)+exp(-2jw)],

что полностью идентично выражению (2.1.2).

Следует запомнить: если оператор фильтра известен, то для получения его частотной характеристики достаточно подставить сигнал exp(jwn) непосредственно в линейное уравнение фильтра. Тем самым выполняются сразу 2 операции: производится z- преобразование h(n) и подставляется z = exp(-jwn), т.е. осуществляется трансформация h(n)→ h(z) → H(w).

Так как импульсная реакция фильтра МНК симметрична (функция h(n) четная), частотное представление передаточной функции должно быть вещественным, в чем нетрудно убедиться, объединив комплексно сопряженные члены выражения (2.1.2):

H(w) = 0.2(1+2 cos w+2 cos 2w).

Альтернативное представление передаточной функции H(w) для фильтра с произвольным количеством коэффициентов 2N+1 нам достаточно хорошо известно, как нормированный фурье-образ прямоугольной функции, каковой по существу и является селектирующее окно фильтра (2.1.1):

H(w) = sin((N+1/2)w)/[(N+1/2)w] = sinc((N+1/2)w). (2.1.3)

Рис. 2.1.2. Сглаживающие фильтры МНК.

Графики передаточных функций (2.1.3) приведены на рисунке 2.1.2. По графикам можно видеть коэффициент передачи сигнала с входа на выход фильтра на любой частоте. Без ослабления (с коэффициентом передачи 1) сглаживающим фильтром пропускается (и должен пропускаться по физическому смыслу сглаживания данных) только сигнал постоянного уровня (нулевой частоты). Этим же определяется и тот фактор (который стоит запомнить), что сумма коэффициентов сглаживающего НЦФ всегда должна быть равна 1 (отсчет ненормированного дискретного фурье-преобразования на частоте w = 0 равен сумме значений входной функции).

Чем больше число коэффициентов фильтра (шире окно фильтра), тем уже полоса пропускания низких частот. Подавление высоких частот довольно неравномерное, с осцилляциями передаточной функции относительно нуля. На рис. 2.1.3 приведен пример фильтрации случайного сигнала (шума) фильтрами с различным размером окна.

Рис. 2.1.3. Фильтрация шумов фильтрами МНК 1-го порядка.

Частотное представление передаточных функций позволяет наглядно видеть особенности фильтров и целенаправленно улучшать их характеристики. Так, если в рассмотренном нами фильтре с однородной импульсной реакцией hn = 1/(2N+1) уменьшить два крайних члена в 2 раза и заново нормировать к сумме S hn = 1, то частотные характеристики фильтра заметно улучшаются. Для нахождения передаточной функции модифицированного фильтра снимем в выражении (2.1.3) нормировку (умножим на 2N+1), вычтем значение 1/2 крайних членов (exp(-jwN)+exp(jwN))/2 = cos(wN) и заново пронормируем полученное выражение (разделим на 2N). Пример новой передаточной функции при N=3 также приведен на рисунке 2.1.2. Передаточные функции модифицированных таким образом фильтров приводятся к нулю на частоте Найквиста, при этом несколько расширяется полоса пропускания низких частот и уменьшается амплитуда осцилляций в области подавления высоких частот. Если смотреть на сглаживание, как на операцию подавления высокочастотных помех, то модифицированные фильтры без сомнения больше соответствует своему целевому назначению.