Смекни!
smekni.com

«Применение ит в исследованиии статистической автомодельности» (стр. 2 из 6)

Из более специализированных книг можно отметить много других книг. “Компьютерное моделирование физических процессов с использованием MATLAB” авторов Коткина Г.Л. и Черкасского В.С. является хорошим руководством для изучения случайных процессов в среде Matlab.

“SPSS 15: профессиональный статистический анализ данных” А. Наследова представляет собой практическое руководство по анализу данных с помощью мощной и популярной программы статистической обработки информации - SPSS версии 15. В издании подробно описываются основы работы с пакетом SPSS, рассматривается большинство методов обработки и анализа данных, а также способов табличного и графического представления полученных результатов. Материал книги организован таким образом, чтобы удовлетворить запросы как новичка, впервые приступающего к анализу данных на компьютере, так и опытного исследователя, желающего воспользоваться самыми современными методами. Основное содержание глав составляют пошаговые инструкции по реализации различных видов математико-статистического анализа в SPSS. Особое внимание уделяется получаемым результатам и их интерпретации. В конце книги приведен глоссарий, содержащий определения большинства статистических терминов. Издание адресовано исследователям в области статистики, маркетинга, социологии, психологии, а также широкому кругу читателей, желающих воспользоваться программой SPSS для профессионального анализа данных.

Не менее полезным при изучении случайных процессов будет и общее ознакомление с возможностями различных математических пакетов, для этого можно ознакомиться со следующими книгами:

· Mathematica 5.1/5.2/6 в математических и научно-технических расчетах, Дьяконов В.П.

В данной книге впервые описано применение трех версий системы Mathematica 5.1, 5.2 и 6.0 – мирового лидера среди универсальных систем компьютерной математики. Особое внимание уделено описанию возможностей новейшей системы Mathematica 6.0, в ядро которой добавлено около тысячи новых функций.

· MATLAB R2006/2007/2008 + Simulink 5/6/7. Основы применения,
Дьяконов В.П.

· Mathematica. Практический курс с примерами решения прикладных задач, Васильев А.Н

· Прикладная математика в системе MATHCAD, Охорзин В.А.

В учебном пособии представляются сведения об основных численных алгоритмах, применяемых в моделировании и оптимизации, также она может помочь в приобретении практических навыков в решении задач.
Программы системы MATHCAD позволят студентам выполнять расчеты с помощью так называемых «живых» формул — формул, в которые можно подставить свои данные и немедленно получить результат.

Ознакомившись с найденной литературой, можно сделать вывод, что до сих пор не хватает полноценного сравнения математических пакетов. По этой причине основной задачей для достижения поставленной цели реферата является:

выбор результативного символьного пакета для решения задач по функциональному анализу.

В аналитическом обзоре литературы соискатель приводит очерк основных этапов развития научных представлений по рассматриваемой проблеме.

На основе анализа работ, выполненных ранее другими исследователями, соискатель выявляет вопросы, которые остались неразрешенными,

и исходя из этого определяет предмет и задачи своих диссертационных исследований, указав их место в разработке данной проблематики.

Глава 2. Использование математических пакетов для исследования случайных процессов

Решение задачи статистического анализа случайных процессов, позволяющее сделать вывод о характере исследуемых данных, возможно с применением большого числа алгоритмов с помощью распространенных сегодня автоматизированных систем. Оно сводится к определению некоторого числа различных характеристик, которое варьируется от задачи к задаче и определяется спецификой предметной области.

Методы, используемые при анализе этих характеристик можно условно разделить на две группы: цифровые, связанные с численным получением решения и аналитические, основанные на построении зависимостей, формул или рядов. Аналитические решения обладают рядом преимуществ, включающих возможность исследования влияния физических параметров, начальных и конечных условий на характер решения. Результаты аналитических решений способствуют разработке адекватных математических моделей, они более информативны, устойчивы, обладают возможностью вычисления значения в любой точке с заданной точностью, не прибегая к вычислениям в других точках. Недостатки подобных решений заключаются в том, что на практике обрабатываемые данные принимаются в виде рядов, особенно это касается случайных процессов, поэтому получение аналитических выражений для данных или их характеристик связано с вычислительными и материальными затратами. Численные решения универсальны, применяются тогда, когда аналитическое решение невозможно, а высокая производительность современных вычислительных комплексов компенсирует их низкое быстродействие. Однако появление различных неустойчивостей, сложность использования результатов расчета, накопление ошибок округления существенно снижает ценность численных выражений.

Комбинирование указанных методов является очевидным и результативным шагом при анализе больших информационных массивов, включая случайные процессы. Оно позволяет повысить оперативность и объединить достоинства обоих методов, ликвидировав часть недостатков. Существуют подходы, основанные на аналитическом описании цифровых массивов с их последующей обработкой. При этом на подобное решение накладываются следующие требования: обеспечение заданной точности описания более простым аналитическим выражением, адаптивность аналитического описания к особенностям каждого сигнала, унифицированность структуры описания независимо от природы и особенностей сигнала, возможность реализации метода в отсутствие априорной информации о сигнале. Однако более преимущественным представляется подход, основанный на численном анализе информационных массивов, случайных процессов, заключающемся в определении функциональных характеристик, например характеристик взаимосвязи, с их дальнейшей аналитической обработкой. Таким образом, удается избежать существенных ошибок при выборе модели выражения, метода и алгоритма аппроксимации, получить априорную информацию об исследуемых процессах и в конечном итоге снять или уменьшить важность соблюдения указанных выше ограничений.

Итак, задача аппроксимативного анализа функциональных характеристик случайных процессов сводится к их численному определению и получению аналитического выражения характеристики. Отметим, что численное решение задачи важно при отсутствии информации об исследуемых процессах. В случае, когда известны какие-либо характеристики, например характеристика взаимосвязи двух процессов – взаимная корреляционная функция, и точность аналитического выражения удовлетворяет исследователя, возможно построение других аналитических характеристик на базе имеющейся информации, например, определение спектральной плотности мощности с использованием преобразования Фурье. Подобные алгоритмы могут быть автоматизированы с помощью известных математических систем, или путем реализации собственной автоматизированной системы.

В настоящий момент существует большое число современных математических систем обработки статистической информации, в составе которых имеются как стандартные функции численной обработки данных, так и средства получения аналитических выражений для функциональных характеристик. Для сравнения современных математических систем необходимо провести их классификацию и определить критерии выбора. При этом необходимо учитывать, что статистическая обработка данных обычно производится специалистом предметной области, не знакомым с нюансами анализа случайных процессов, и хотелось бы, чтобы она не требовала программирования качественно новых алгоритмов.

Навигация в пространстве современных математических систем достаточно тяжела, если с такими системами, как Mathcad, MATLAB, Mathematica знакомы практически все, то многие другие специализированные статистические системы приобрести достаточно тяжело. Хотя именно такие системы бывают наиболее удобными для решения узко специализированных задач; кроме этого, они разработаны для решения конкретных проблем, например из области прикладной физики, с учетом апробированных методик проведения всего цикла исследований, поэтому с потерей универсальности происходит улучшение качества обработки, в том числе и повышение ее быстродействия. Но такие пакеты часто абсолютно не предназначены для решения научно-исследовательских математических задач.

Статистические пакеты общего назначения отличаются отсутствием прямой ориентации на специфическую предметную область, широким диапазоном статистических методов, дружелюбным интерфейсом пользователей. Специализированные пакеты обычно реализуют методы, используемые в конкретной предметной области. Для анализа временных рядов используются Эвриста, МЕЗОЗАВР, ОЛИМП: СтатЭксперт, ForecastExpert. Такие пакеты содержат достаточно полный набор традиционных методов, а также оригинальные методы и алгоритмы, созданные разработчиками пакета. Их использование целесообразно, когда требуется систематическое решение задач узкой предметной области.