Смекни!
smekni.com

«Применение ит в исследованиии статистической автомодельности» (стр. 1 из 6)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Выпускная работа по
«Основам информационных технологий»

Магистрант

Механико-математического факультета

Камай Анны Михайловны

Руководители:

профессор, доктор физ.-мат. наук

Кротов В.Г.

старший преподаватель

Кожич Павел Павлович

Минск – 2009 г.

Оглавление

Оглавление. 2

Список обозначений ко всей выпускной работе. 3

Реферат на тему «Применение ИТ в исследованиии статистической автомодельности» 4

Введение. 4

Глава 1. Обзор литературы.. 6

Глава 2. Использование математических пакетов для исследования случайных процессов. 8

Глава 3 (основные результаты) 12

Глава 4 (обсуждение результатов) 19

Заключение. 20

Список литературы к реферату. 22

Предметный указатель к реферату. 23

Интернет ресурсы в предметной области исследования. 24

Действующий личный сайт в WWW... 26

Граф научных интересов. 27

Презентация магистерской диссертации. 28

Список литературы к выпускной работе. 29

Приложение 1. 30

Приложение 2. Презентация магистерской диссертации. 33

Список обозначений ко всей выпускной работе

ИТ – информационные технологии;

ФБД – фрактальное броуновское движение;

В случае повторения в диссертации специальных терминов, сокращений, аббревиатур, условных обозначений и тому подобного менее пяти раз их расшифровку приводят в тексте при первом упоминании

Реферат на тему «Применение ИТ в исследованиии статистической автомодельности»

(статья) по ИТ в предметной области (10-15 стр)

Введение

Современное развитие науки характеризуется потребностью сложного изучения всевозможных сложных процессов и явлений – физических, химических, биологических, экономических, социальных и других. Происходит значительное увеличение темпов математизации и расширение ее области действия. Теории математики широко применяются в других науках, казалось бы, совершенно от нее далеких – лингвистике, юриспруденции. Это вызвано естественным процессом развития научного знания, который потребовал привлечения нового и более совершенного математического аппарата, проявлением новых разделов математики, а также кибернетики, вычислительной техники и так далее, что значительно увеличило возможности ее применения.

Более точное математическое описание процессов и явлений, вызванное потребностями современной науки, приводит к появлению сложных систем интегральных, дифференциальных, интегральных, трансцендентных уравнений и неравенств, которые не удается решить аналитическими методами в явном виде. Для решения таких задач приходится прибегать к вычислительным алгоритмам, использовать какие-либо бесконечные процессы, сходящиеся к конечному результату. Приближенное решение задачи получается при выполнении определенного числа шагов.

Развитие ЭВМ стимулировало более интенсивное развитие вычислительных методов, создало предпосылки решения сложных задач науки, техники, экономики. Широкое применение при решении таких задач получили методы прикладной математики и математического моделирования.

В настоящее время прикладная математика и ЭВМ являются одним из определяющих факторов научно-технического прогресса. Они способствуют ускорению развития ведущих отраслей народного хозяйства, открывают принципиально новые возможности моделирования и проектирования сложных систем с выбором оптимальных параметров технологических процессов.

Двумя основными задачами, относящимися к компьютерному изучению случайных процессов, являются моделирование случайных процессов и нахождение характеристик случайного процесса по выборке данных. Выполнение обоих этих задач без использования специализированных пакетов является очень трудоемким, а иногда даже и невозможным. Первая из задач часто – моделирование случайных процессов – требует от используемого пакета только наличия функций генерации случайной величины по указанному закону распределения и графических инструментов для визуализации результатов, вторая же задача – нахождение характеричтик – часто требует наличия большого количества библиотек с реализованными алгоритмами анализа данных. И целью этой работы является изучение проблемы выбора различных пакетов для изучения случайных процессов.

Современную жизнь невозможно представить без использования информационных технологий. Любая отрасль знаний использует скорость и мощность компьютера. Так исторически сложилось, что информатика развивается неразрывно с другими областями науки, удовлетворяя их нужды и потребности. В частности, и для решения математических задач существует множество пакетов, как узкоспециализированных, так и для решения широкого класса проблем. Большинство пакетов являются узкопрофильными: анализ статистических данных, решение определенного типа уравнений. Только немногие способны решать широкий спектр задач. К таким относятся Mathematica, Mathcad, Maple, MathLab, Derive, Eureka. Эти системы содержат большой набор готовых к употреблению алгоритмов и программ, позволяющих решать задачи математического анализа, линейной алгебры, геометрии, дифференциальных уравнений. К настоящему моменту в лидерах оказались Mathematica и Maple из-за их действительно уникальных возможностей и MathCad, благодаря простоте в использовании и усвоении. Возможности этих трех пакетов отличаются не только между собой, но и между их версиями. Поэтому сравнивать эти пакеты достаточно сложно. Однако любая из программ не заменяет математического мышления. Прежде чем применять какую-либо формулу, нужно проанализировать выполнение условий ее применимости и, при необходимости, преобразовать задачу так, чтобы можно было ее употребить. Человек, использующий средства любого пакета, должен хорошо разбираться в математической постановке вопроса и владеть возможностями самой программы. Иначе можно получить совсем иной результат. Современные программные пакеты могут выполнять сложнейшие аналитические вычисления, но они не способны на гениальные догадки.

В данной работе более детально рассмотрен случайны процесс со свойствами статистической автомодельности, а именно модель ФБД и реализована программа нахождения параметра модели ФБД в пакете Mathematica.

В данной работе представлен краткий обзор пакетов Mathematica, MathСad, Maple, описаны их преимущества и недостатки. Также данный реферат посвящен математическим финансовым моделям со свойствами статистической автомодельности (самоподобия), и их исследованию при помощи информационных технологий. Одним из широко распространенных примеров модели со свойствами самоподобия является фрактальное броуновское движение (ФБД). В реферате дано определение ФБД, описаны его основные свойства, построен алгоритм нахождения параметра ФБД, показан способ моделирования ФБД с помощью пакета Mathematica.

Показан пример нахождения параметра модели статистической автомодельности, а именно ФБД, в пакете Mathematica и возникающие при этом проблемы.

В разделе "Введение" дается обоснование круга вопросов, нуждающихся в дальнейшем изучении по научной проблематике, связанной с темой диссертации,

обосновывается ее актуальность,

показывается необходимость проведения исследований по данной теме для решения конкретной проблемы (задачи),

развития конкретных направлений в соответствующей отрасли науки,

отражается место диссертации среди других исследований в этой области.

Введение, как правило, - короткий раздел объемом до 6 страниц.

=========================================================

Основная часть материала диссертации излагается в главах, в которых приводятся:

аналитический обзор литературы по теме, развернутое обоснование выбора направления исследований и изложение общей концепции работы;

описание объектов исследования и используемых при проведении исследования методов, оборудования;

изложение выполненных в работе теоретических и (или) экспериментальных исследований.

Распределение основного материала диссертации по главам и структурирование по разделам определяются соискателем. В докторской диссертации, подготовленной в виде научного доклада, анализ научной литературы и описание объектов исследования, использованных методов и оборудования не следует оформлять в виде самостоятельных глав.

Глава 1. Обзор литературы

Применения ИТ при решении задач в настоящее время является актуальный вопросом. Достаточное количество книг посвящено этой тематике. В пособии Л.Л. Голубевой «Компютерная математика. Символьный пакет Matematica» изучаются вопросы идеологии символьных пакетов, на примере данного пакета, знание которых позволит отыскивать при необходимости нужные средства для теоретических исследований или решении конкретных задач. В «Электронном пособии по высшей математике на базе системы Mathematica» А.А. Кулешова изложен курс высшей математике. Приведено множество примеров решения в пакете Mathematica задач высшей математики и других дисциплин.

Нужно отметить также такие издания, как «Информационные технологии в математике» Ю.Ю. Тарасевич, где рассматриваются вопросы, касающиеся решения математических задач с использованием пакетов Maple и MathCAD, подготовки математических и естественнонаучных текстов с использованием издательской системы LaTeX. Так же в книге приводятся необходимые сведения по численным методам.

Что касается случайных процессов, то одной из наиболее интересных книг по компьютерному изучению случайных процессов является книга Тюрина Ю.Н. и Макарова А.А. “Статистический анализ данных на компьютере“. Эта книга является учебным пособием по анализу данных и статистике, рассчитанным на прикладных специалистов, менеджеров и студентов. В ней излагаются основные сведения, необходимые на практике для анализа данных (в том числе анализа временных рядов), на наглядных примерах рассматриваются основные постановки задач и методы их решения с использованием популярных статистических пакетов STADIA, SPSS и Эвриста. В приложении дается обзор других программных средств для анализа данных. Большое внимание в книге уделено средствам анализа временных рядов и другим методам, часто используемым в прикладных задачах.