13.5. Фильтры СЖАТИЯ СИГНАЛОВ
Рассмотренные выше методы относятся к расчету так называемых идеальных инверсных фильтров, т.е. фильтров полной инверсии системных операторов. Однако использование идеальных инверсных фильтров на практике не всегда возможно, т.к. регистрируемые данные обычно осложнены влиянием помех (шумов), а инверсные фильтры обычно имеют коэффициент усиления дисперсии шумов значительно больше 1. В этом случае задача точной деконволюции (восстановления истинной первоначальной формы сигнала), как правило, не ставится, а инверсные фильтры считаются оптимальными с точки зрения максимального приближения к форме полезного сигнала с определенным допустимым коэффициентом усиления дисперсии помех. Такие фильтры называются фильтрами неполной (частичной, ограниченной) деконволюции или фильтрами сжатия сигнала. При проектировании фильтров неполной деконволюции учитываются статистические характеристики помех во входном сигнале и их соотношение со статистическими характеристиками самого входного сигнала.
Передаточная функция фильтра неполной деконволюции с учетом помех во входном сигнале определяется выражением:
H-1(z) = H*(z)/[|H(z)|2+g2], (13.5.1)
где g2 = k·sh2 - дисперсия шумов в единицах дисперсии оператора hn, sh2 – дисперсия значений оператора hn, (при условии суммы значений оператора, равной 1), k - отношение дисперсии шумов к дисперсии оператора hn. Коэффициент g2 играет роль регуляризирующего фактора при выполнении операции деконволюции информации.
Рис. 13.5.1. |
На рис. 13.5.1 пример формы оператора hn и спектральных функций (13.5.1) при разных значениях параметра g. При g = 0 выражение (13.5.1) обращается в идеальный инверсный фильтр 1/H(z). Во втором крайнем случае, при g2>>|H(z)|2, фильтр (13.5.1) переходит в фильтр, согласованный с сигналом по частотному спектру: H-1(z) = H*(z)/g2, который только максимизирует отношение сигнал/помеха.
На рис. 13.5.2 приведена форма инверсных операторов, соответствующая их частотным характеристикам на рис. 13.5.1(В), и результаты свертки инверсных операторов с прямым (для лучшего просмотра графики прямой оператор при свертке сдвинут вправо на 2 значения Dt). При g=0 коэффициент усиления дисперсии шумов равен 11, при g=0.4sh2 равен 4.6. Однако снижение усиления дисперсии шумов сопровождается увеличением погрешности приближения, что можно видеть на рис. 13.5.2(В), при этом уменьшается амплитуда восстановления импульса Кронекера и появляются осцилляции после импульса. Но при наличии шумов и правильном выборе параметра g общее отношение амплитудных значений сигнал/ шум для оператора по (13.5.1) больше, чем для прямой инверсии по (13.1.2), что объясняется более существенным уменьшением коэффициента усиления дисперсии шумов при увеличении параметра g, чем увеличением погрешности приближения.
Рис. 13.5.2. |
Операторы оптимальных фильтров сжатия сигналов также могут вычисляться с учетом помех. Если сигнал s(k) и помеха статистически независимы, то функция автоковариации сигнала на входе фильтра:
ai = asi + bi, (13.5.2)
где asi и bi - функции автоковариации сигнала и помех. При помехе типа белого шума функция автоковариации помех представляет собой весовую дельта-функцию в точке 0:
bi = c2di, (13.5.3)
где с2- дисперсия помех. С учетом этого фактора расчет оптимальных инверсных фильтров может проводиться по вышеприведенным формулам (13.3.5, 13.3.9) с изменением значения коэффициента ао:
ao= ao + c2. (13.5.4)
На рис. 13.5.3(А) приведены примеры операторов оптимальных инверсных фильтров, вычисленные по прямому оператору, приведенному на рис. 13.5.1(А). Значения коэффициента с2 заданы в долях дисперсии прямого оператора. Ввод коэффициента с2 в функцию автоковариации резко уменьшает значения коэффициентов инверсного оператора и, соответственно, уменьшает коэффициент усиления дисперсии помех.
Рис. 13.5.3.
Для приведенного примера, при исходном значении коэффициента усиления дисперсии шумов порядка 12 для с2=0, его значение уменьшается до 1.8 при с2=0.1s2 и становится меньше 1 при с2 > 0.3s2. Естественно, что общая погрешность приближения деконволюции при этом также существенно изменяется (см. рис. 13.5.3(В)), но амплитуда значения сигнала на месте импульса Кронекера (там, где он должен быть) изменяется много меньше, чем коэффициент усиления дисперсии шумов, а, следовательно, отношение сигнал/шум при введении коэффициента с2 существенно увеличивается.
литература
12. Канасевич Э.Р. Анализ временных последовательностей в геофизике. - М.: Недра, 1985.- 300 с.
22. Рапопорт М.Б. Вычислительная техника в полевой геофизике: Учебник для вузов. - М.: Недра, 1993.- 350 с.
А.В.Давыдов.
20.08.07.
Cайт автора ¨ Лекции ¨ Практикум
О замеченных опечатках, ошибках и предложениях по дополнению: davpro@yandex.ru.
Copyright ©2008 Davydov А.V.