Главным инструментом эконометрии служит эконометрическая модель или экономико-математическая модель, параметры которой (факторы) оцениваются средствами математической статистики. Эта модель выступает в качестве средства анализа и прогнозирования конкретных экономических процессов на основе реальной статистической информации.
Эконометрические модели можно классифицировать по ряду классификационных признаков. Одной из основных классификационных эконометрических моделей является классификация по направлению и сложности причинных связей между показателями, характеризующими экономическую систему. Если пользоваться термином «переменная», то в любой достаточно сложной экономической системе можно выделить внутренние или эндогенные переменные (например, выпуск продукции, численность работников, производительность труда) и внешние или экзогенные переменные (например, поставка ресурсов, климатические условия и др.). Экзогенные переменные – те, которые задаются вне модели, т.е. известны заранее, а эндогенные переменные получаются в результате расчетов. Тогда по направлению и сложности связей между внутренними переменными и внешними переменными выделяют следующие эконометрические модели: регрессионные модели, системы взаимозависимых моделей, рекурсивные системы и модели временных рядов.
Регрессионными называют модели, основанные на уравнении регрессии, или системе регрессионных уравнений, связывающих величины эндогенных и экзогенных переменных. Различают уравнения (модели) парной и множественной регрессии. Если для обозначения эндогенных переменных использовать букву у, а для экзогенных переменных букву х, то в случае линейной модели уравнение парной регрессии имеет вид
у = ao + a1 х , (1.1)
а уравнение множественной регрессии:
у = a0+a1x1+a2x2+…. (1.2)
Для нахождения параметров этих моделей а0, а1, … и т.д. обычно используют метод наименьших квадратов.
Для нахождения параметров системы взаимозависимых уравнений используются более сложные методы: двух- и трехшаговый метод наименьших квадратов, методы максимального правдоподобия с полной и неполной информацией, методы математического программирования и др.
На практике стремятся упростить системы взаимозависимых моделей и привести их к так называемому рекурсивному виду. Для этого сначала выбирают эндогенную переменную (внутренний показатель), зависящую только от экзогенных переменных (внешних факторов), обозначают ее у1. Затем выбирается внутренний показатель, который зависит только от внешних факторов и от y1, и т.д.; таким образом, каждый последующий показатель зависит только от внешних факторов и от внутренних предыдущих. Такие системы называются рекурсивными. Параметры первого уравнения рекурсивных систем находят методом наименьших квадратов, их подставляют во второе уравнение и опять применяется метод наименьших квадратов, и т.д.
Временной ряд – это последовательность экономических показателей измеренных через равные промежутки времени. В экономике временные ряды – это ежедневные цены на акции, курсы валют, еженедельные и месячные объемы продаж, годовые объемы производства и т.п.
В моделях временных рядов yt обычно выделяют три составляющих ее части: тренд xt, сезонную компоненту St, циклическую компоненту Ct и случайную компоненту e. Обычно модель имеет следующий вид:
yt = xt + St + Ct + e при t = 1, ... , n (1.4)
В последнее время к указанным трем компонентам все чаще добавляют еще одну компоненту, именуемую интервенцией. Под интервенцией понимают существенное кратковременное воздействие на временной ряд. Примером интервенции могут служить события «черного вторника», когда курс доллара за день вырос почти на тысячу рублей.
Трендом временного ряда называют плавно изменяющуюся, не циклическую компоненту, описывающую чистое влияние долговременных факторов, эффект которых сказывается постепенно.
В экономике к таким факторам можно отнести:
• изменение демографических характеристик популяции, включая рост населения, изменение структуры возрастного состава, изменение географического расселения и т.д.;
• технологическое и экономическое развитие;
• рост потребления и изменение его структуры.
Действие этих и им подобных факторов происходит постепенно, поэтому их вклад исследователи предпочитают описывать с помощью гладких кривых, просто задающихся в аналитическом виде.
Сезонная компонента отражает присущую миру и человеческой деятельности повторяемость процессов во времени. Она часто присутствует в экономических, метеорологических и других временных рядах. Сезонная компонента чаще всего служит главным источником краткосрочных колебаний временного ряда, так что ее выделение заметно снижает вариацию остаточных компонент.
Сезонная компонента временного ряда описывает поведение, изменяющееся регулярно в течение заданного периода (года, месяца, недели, дня и т.п.). Она состоит из последовательности почти повторяющихся циклов. Типичным примером сезонного эффекта является объем продаж в декабре каждого года в преддверии Рождества и нового года. В то же время пик объема продаж товаров для школьников приходится на начало нового учебного года. Объем перевозок пассажиров городским транспортом имеет два характерных пика утром и вечером, причем период вечернего пика и продолжительность его более длительны. Сезонные эффекты присущи многим сферам деловой активности: многие производства имеют сезонный характер производства, потребление товаров также имеет ярко выраженную сезонность.
В некоторых временных рядах сезонная компонента может иметь плавающий или изменяющийся характер. Классическим примером подобного эффекта является праздник Пасхи, сроки которого изменяются из года в год. Поэтому локальный пик объемов междугородных перевозок во время пасхальных каникул является плавающим сезонным эффектом.
Циклическая компонента занимает как бы промежуточное положение между закономерной и случайной составляющими временного ряда. Если тренд – это плавные изменения, проявляющиеся на больших временных промежутках и, если сезонная компонента – это периодическая функция времени, ясно видимая, когда ее период много меньше общего времени наблюдений, то под циклической компонентой обычно подразумевают изменения временного ряда, достаточно плавные и заметные для того, чтобы не включать их в случайную составляющую, но такие, которые нельзя отнести ни к тренду, ни к периодической компоненте. Циклическая компонента временного ряда описывает длительные периоды относительного подъёма и спада.
1.4. Постановки некоторых эконометрических задач
Приведем несколько примеров задач эконометрического анализа.
Пример № 1. [1]. Рынок квартир в Москве. Данные для этого исследования собраны студентами РЭШ Российской экономической школы) в 1996 г. После проведенного анализа была выбрана логарифмическая форма модели, как более соответствующая данным:
Здесь LOGPRICE — логарифм цены квартиры (в долл. США), LOGUVSP — логарифм жилой площади (в кв. м), LOGPLAN — логарифм площади нежилых помещении (в кв. м), LOGKJTSP — логарифм площади кухни (в кв. м), LOGDIST — логарифм расстояния от центра Москвы (в км). Включены также бинарные, «фиктивные» переменные, принимающие значения 0 или 1: FLOOR — принимает значение 1, если квартира расположена на первом или на последнем этаже, BRICK — принимает значение 1, если квартира находится в кирпичном доме, BAL — принимает значение 1, если в квартире есть балкон, LIFT — принимает значение 1, если в доме есть лифт, R1 — принимает значение 1 для однокомнатных квартир и 0 для всех остальных, R1, R3, R4 — аналогичные переменные для двух-, трех- и четырехкомнатных квартир. Результаты оценивания уравнения (1.5) для 464 наблюдений, относящихся к 1996 г., приведены в таблице 1.
Таблица 1
Переменная | Коэффициент | Стандартная ошибка | t-статистика | P-значение | |||||
CONST | 7.106 | 0.290 | 24.5 | 0.0000 | |||||
LOGUVSP | 0.670 | 0.069 | 9.65 | 0.0000 | |||||
LOGPLAN | 0.431 | 0.049 | 8.71 | 0.0000 | |||||
LOGKITSP | 0.147 | 0.060 | 2.45 | 0.0148 | |||||
LOGDIST | -0.114 | 0.016 | -7.11 | 0.0000 | |||||
BRICK | 0.134 | 0.024 | 5.67 | 0.0000 | |||||
FLOOR | -0.0686 | 0.021 | -3.21 | 0.0014 | |||||
LIFT | 0.114 | 0.024 | 4.79 | 0.0000 | |||||
BAL | 0.042 | 0.020 | 2.08 | 0.0385 | |||||
Rl | 0.214 | 0.109 | 1.957 | 0.0510 | |||||
R2 | 0.140 | 0.080 | 1.75 | 0.0809 | |||||
S3 | 0.164 | 0.060 | 2.74 | 0.0065 | |||||
R4 | 0.169 | 0.054 | 3.11 | 0.0020 |
Мы не будем сейчас заниматься анализом полученной эконометрической модели. Подобная модель позволяет оценить стоимость квартиры в Москве с учетом рассмотренных выше факторов. Надо отметить, что число факторов можно было увеличить, включив в модель время в пути до ближайшего метро, экологическое состояние района, наличие «зеленой зоны» и другие факторы. В этом случае модель была бы более прогрессивной и имеющей больший практический смысл.