Смекни!
smekni.com

Методические указания по выполнению задания 1 42 Приложение 2 45 (стр. 8 из 21)

3. Оценки коэффициентов имеют неправильные с точки зрения теории знаки или неоправданно большие значения.

Что же делать, если по всем признакам имеется мультиколлинеарность? Однозначного ответа на этот вопрос нет, и среди эконометристов есть разные мнения на этот счет. При столкновении с проблемой мультиколлинеарности может возникнуть естественное желание отбросить «лишние» независимые переменные, которые, возможно, служат ее причиной. Однако следует помнить, что при этом могут возникнуть новые трудности. Во-первых, далеко не всегда ясно, какие переменные являются лишними в указанном смысле. Мультиколлинеарность означает лишь приблизительную линейную зависимость между факторами, но это не всегда выделяет «лишние» переменные. Во-вторых, во многих ситуациях удаление каких-либо независимых переменных может значительно отразиться на содержательном смысле модели. Наконец, отбрасывание так называемых существенных переменных, т.е. независимых переменных, которые реально влияют на изучаемую зависимую переменную, приводит к смещению коэффициентов модели. На практике, обычно при обнаружении мультиколлинеарности убирают наименее значимый для анализа фактор, а затем повторяют расчеты.

2.3.2. Использование фиктивных переменных

Регрессионные модели являются достаточно гибким инструментом, позволяющим, в частности, оценивать влияние качественных признаков на изучаемую переменную. Это достигается введением в число факторов так называемых фиктивных переменных, принимающих, как правило, значения 1 или 0 в зависимости от наличия или отсутствия соответствующего признака в очередном наблюдении. С формальной точки зрения фиктивные переменные ничем не отличаются от других факторов. Наиболее сложный вопрос, возникающий при их использовании, – это правильная интерпретация получаемых оценок.

Как правило, независимые переменные в регрессионных моделях имеют «непрерывные» области изменения (национальный доход, уровень безработицы, размер зарплаты и т.п.). Однако теория не накладывает никаких ограничений на характер факторов, в частности, некоторые переменные могут принимать всего два значения или, в более общей ситуации, дискретное множество значений. Необходимость рассматривать такие переменные возникает довольно часто в тех случаях, когда требуется принимать во внимание какой-либо качественный признак. С таким примером мы столкнулись ранее, когда рассматривали модель стоимости жилой площади в Москве. В качестве такого признака рассматривалась «этажность»: необходимо было разделить первый, последний и другие этажи. Есть и другие примеры. Так при исследовании зависимости зарплаты от различных факторов может возникнуть вопрос, влияет ли на ее размер и, если да, то в какой степени, наличие у работника высшего образования. Точно также можно выяснить в какой степени имеются различия в оплате труда между мужчинами и женщинами. Для решения подобных задач в принципе можно оценивать соответствующие уравнения внутри каждой категории, а затем изучать различия между ними, но введение дискретных или группирующих переменных позволяет определить параметры модели сразу по всем категориям. Фиктивные переменные, несмотря на свою внешнюю простоту, являются весьма гибким инструментом при исследовании влияния качественных признаков.

Выводы:

1) для исследования влияния качественных признаков в модель можно вводить бинарные (фиктивные) переменные, которые, как правило, принимают значение 1, если данный качественный признак присутствует в наблюдении, и значение 0 при его отсутствии;

2) способ включения фиктивных переменных зависит от априорной информации относительно влияния соответствующих качественных признаков на зависимую переменную и от гипотез, которые проверяются с помощью модели;

3) от способа включения фиктивной переменной зависит и интерпретация оценки коэффициента при ней.

2.3.3. Проблемы гетероскедастичности

Гетероскедастичность – крайне неприятное свойство исходных, когда дисперсия ошибки зависит от номера наблюдения. На графике гетероскедастичность проявляется в том, что с увеличением или уменьшением порядкового номера измерения увеличивается рассеивание измерений около линии тренда. Это может привести к существенным погрешностям оценок коэффициентов уравнения регрессии. Гетероскедастичность возникает тогда, когда объекты, как правило, неоднородны. Существует несколько методов коррекции, решающих проблему гетероскедастичности.

Наиболее эффективный из них – метод взвешенных наименьших квадратов.

Сущность метода чрезвычайно проста. Пусть исходная модель имеет вид:

.

Тогда, делением каждого элемента системы на значение st мы приходим к другой системе

(2.26)

где

взвешенная дисперсия;

, n – число измерений.

Таким образом, с помощью преобразования 2.26 мы устраняем гетероскедастичность. Кроме того, логарифмирование исходных данных также в некоторых случаях снижает ошибки определения параметров модели, вызванные гетероскедастичностью.

Резюме

Рассмотренные методы корреляционно-регрессионного анализа позволяют находить оценки параметров регрессионных моделей и анализировать их. Безусловно, что разработка эконометрических моделей наиболее эффективна при использовании ЭВМ.

Результаты эконометрического анализа могут быть существенно искажены, если переменные мультиколлинеарны. Эффективного решения этой проблемы в настоящее время не существует. Удаление из анализа переменных, сильно коррелирующих друг с другом, может привести к искажению полученных оценок.

3. Эконометрический анализ на основе временных рядов


3.1.Основные понятия в теории временных рядов

Временной ряд – это некоторая последовательность чисел (измерений) экономического или бизнес-процесса во времени. Его элементы измерены в последовательные моменты времени, обычно через равные промежутки.

Как правило, составляющие временной ряд числа или элементы временного ряда, нумеруют в соответствии с номером момента времени, к которому они относятся. Таким образом, порядок следования элементов временного ряда весьма существен.

Расширенное понятие временного ряда. Понятие временного ряда часто толкуют расширительно. Например, одновременно могут регистрироваться несколько характеристик упомянутого процесса. В этом случае говорят о многомерных временных рядах. Если измерения производятся непрерывно, говорят о временных рядах с непрерывным временем, или случайных процессах. Наконец, текущая переменная может иметь не временной, а какой-нибудь иной характер, например пространственный. В этом случае говорят о случайных полях. Примеры временных рядов. В экономике это ежедневные цены на акции, курсы валют, еженедельные и месячные объемы продаж, годовые объемы производства и т.п. На рис. 5 показан пример временного ряда с объемами перевозок пассажиров авиарейсами за 12 лет в США.

На графике видна устойчивая тенденция роста объема перевозок от года к году (тренд). Кроме того, у этого ряда есть сезонные компоненты. Объем перевозок резко возрастает в летние месяцы и снижается в зимние. В качестве циклической компоненты ряда здесь можно выделить повторяющиеся пики снижения перевозок на период праздника Рождества (24 декабря) и т.д. Вполне естественно, что этот ряд в достаточной степени предсказуем. На рис.6 представлен другой ряд, с объемами продаж компьютерной техники.

На графике отчетливо видно резкое снижение объема продаж на 146 месяце. Такой скачок называется интервенцией. Модель этого ряда можно построить, исключив определенным способом интервенцию, но сделать прогноз таких резких и неповторяющихся скачков этими методами невозможно.

Временные ряды называются стационарными, если числовые характеристики ряда являются постоянными на любом участке временного ряда. Реально в жизни это не так, но существуют методы, позволяющие преобразовать временной ряд и привести его к стационарному.

3.2. Цели, этапы и методы анализа временных рядов

Цели анализа временных рядов. При практическом изучении временных радов на основании экономических данных на определенном промежутке времени эконометрист должен сделать выводы о свойствах этого ряда и о вероятностном механизме, порождающем этот ряд. Чаще всего при изучении временных рядов ставятся следующие цели:

1. Краткое (сжатое) описание характерных особенностей ряда.

2. Подбор статистической модели, описывающей временной ряд.

3. Предсказание будущих значений на основе прошлых наблюдений.

4. Управление процессом, порождающим временной ряд.

На практике эти и подобные цели достижимы далеко не всегда и далеко не в полной мере. Часто этому препятствует недостаточный объем наблюдений из-за ограниченного времени наблюдений. Еще чаще – изменяющаяся с течением времени статистическая структура временного ряда.