Показатель | Условное обозначение | План | Факт | Отклонение |
Валовая продукция, млн. руб. | ВП | 160 000 | 240 000 | 80 000 |
Среднегодовая численность рабочих, чел. | ЧР | 1000 | 1200 | +200 |
Среднегодовая выработка одного рабочего, млн. руб. | ГВ | 160 | 200 | +40 |
Задача 1.
Задача имеет смысл для мультипликативных и кратных моделей. Рассмотрим простейшую двухфакторную модель
. Очевидно, что при анализе динамики этих показателей будет выполняться следующее соотношение между индексами: ,где значение индекса находится отношением значения показателя в отчетном периоде к базисному.
Рассчитаем индексы валовой продукции, численности работников и среднегодовой выработки для нашего примера:
; .Согласно вышеприведенному правилу, индекс валовой продукции равен произведению индексов численности работников и среднегодовой выработки, т. е.
.Очевидно, что если мы рассчитаем непосредственно индекс валовой продукции, то получим то же самое значение:
.Мы можем сделать вывод: в результате увеличения численности работников в 1,2 раза и увеличения среднегодовой выработки в 1,25 раза объем валовой продукции увеличился в 1,5 раза.
Таким образом, относительные изменения факторных и результативного показателей связаны той же зависимостью, что и показатели в исходной модели. Данная задача решается при ответе на вопросы типа: "Что будет, если i-й показатель изменится на n%, а j-й показатель изменится на k%?".
Задача 2.
Является основной задачей детерминированного факторного анализа; ее общая постановка имеет вид:
Пусть
- жестко детерминированная модель, характеризующая изменение результативного показателя y от n факторов; все показатели получили приращение (например, в динамике, по сравнению с планом, по сравнению с эталоном): ; .Требуется определить, какой частью приращение результативного показателя y обязано приращению i-го фактора, т. е. расписать следующую зависимость:
,где
- общее изменение результативного показателя, складывающееся под одновременным влиянием всех факторных признаков; - изменение результативного показателя под влиянием только фактора .В зависимости от того, какой метод анализа модели выбран, факторные разложения могут различаться. Поэтому рассмотрим в контексте данной задачи основные методы анализа факторных моделей.
Основные методы детерминированного факторного анализа
Одним из важнейших методологических в АХД является определение величины влияния отдельных факторов на прирост результативных показателей. В детерминированном факторном анализе (ДФА) для этого используются следующие способы: выявления изолированного влияния факторов, цепной подстановки, абсолютных разниц, относительных разниц, пропорционального деления, интегральный, логарифмирования и др.
Первые три способа основываются на методе элиминирования. Элиминировать - значит устранить, отклонить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Этот метод исходит из того, что все факторы изменяются независимо друг от друга: сначала изменяется один, а все другие остаются без изменения, потом изменяются два, затем три и т. д., при неизменности остальных. Это позволяет определить влияние каждого фактора на величину исследуемого показателя в отдельности.
Дадим краткую характеристику наиболее распространенным способам.
Прием выявления изолированного влияния факторов.
Изменение результативного показателя под влиянием какого-либо фактора вычисляется по формуле:
.Применяя этот метод к нашему примеру, получим следующее:
млн. руб.; млн. руб.;то есть объем валовой продукции повысился на 32000 млн. руб. за счет увеличения численности рабочих и на 40000 млн. руб. за счет повышения выработки.
Однако, если мы рассчитаем общий прирост валовой продукции, то он будет равен 80000 млн. руб., что больше суммы приростов за счет отдельных факторов:
млн. руб.Таким образом, при использовании данного метода полное разложение не достигается, т. е. сумма влияний всех факторов не равна общему приросту результативного показателя. Этот метод позволяет только приблизительно оценить степень влияния факторов, но, с другой стороны, он является самым простым методом и не требует установления очередности изменения факторов.
Прием цепных подстановок.
.Способ цепной подстановки является весьма простым и наглядным методом, наиболее универсальным из всех. Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных. Этот способ позволяет определить влияние отдельных факторов на изменение величины результативного показателя путем постепенной замены базисной величины каждого факторного показателя в объеме результативного показателя на фактическую в отчетном периоде. С этой целью определяют ряд условных величин результативного показателя, которые учитывают изменение одного, затем двух, затем трех и т. д. факторов, допуская, что остальные не меняются. Сравнение величины результативного показателя до и после изменения уровня того или иного фактора позволяет определить воздействие конкретного фактора на прирост результативного показателя, исключив влияние остальных факторов. При использовании этого метода достигается полное разложение.
Напомним, что при использовании этого способа большое значение имеет очередность изменения значений факторов, так как от этого зависит количественная оценка влияния каждого фактора.
Прежде всего нужно отметить, что не существует и не может существовать единой методики определения этого порядка - существуют модели, в которых он может быть определен произвольно. Лишь для небольшого числа моделей можно использовать формализованные подходы. На практике эта проблема не имеет большого значения, поскольку в ретроспективном анализе важны тенденции и относительная значимость того или иного фактора, а не точные оценки их влияния.
Тем не менее для соблюдения более или менее единого подхода к определению порядка замены факторов в модели можно сформулировать общие принципы. Введем некоторые определения.
Признак, непосредственно относящийся к изучаемому явлению и характеризующий его количественную сторону, называется первичным или количественным. Эти признаки: а) абсолютные (объемные); б) их можно суммировать в пространстве и времени. В качестве примера можно привести объем реализации, численность, стоимость оборотных средств и т. д.
Признаки, относящиеся к изучаемому явлению не непосредственно, а через один или несколько других признаков и характеризующие качественную сторону изучаемого явления, называются вторичными или качественными. Эти признаки: а) относительные; б) их нельзя суммировать в пространстве и времени. Примерами могут служить фондовооруженность, рентабельность и др. В анализе выделяют вторичные факторы 1-го, 2-го и т. д. порядков, получаемые путем последовательной детализации.
Жестко детерминированная факторная модель называется полной, если результативный показатель количественный, и неполной, если результативный показатель качественный. В полной двухфакторной модели один фактор всегда количественный, второй - качественный. В этом случае замену факторов рекомендуют начинать с количественного показателя. Если же имеется несколько количественных и несколько качественных показателей, то сначала следует изменить величину факторов первого уровня подчинения, а потом более низкого. Таким образом, применение способа цепной подстановки требует знания взаимосвязи факторов, их соподчиненности, умения правильно их классифицировать и систематизировать.
Теперь рассмотрим на нашем примере порядок применения способа цепных подстановок.
Алгоритм расчета способом цепной подстановки для данной модели выглядит следующим образом:
млн. руб.