Дисперсия стационарного случайного процесса X(t) может определяться по формуле (9.2.23) при t = 0:
Dx =
Dx(wi), (9.2.25)т.е. дисперсия стационарного случайного процесса равна сумме дисперсий всех случайных гармоник ее спектрального разложения.
Эффективная ширина спектра мощности является обобщенной характеристикой спектра случайного процесса и определяется по формуле:
Bk = Dw×Dx/Dmax, (9.2.26)
где Dmax - максимальное значение функции Dx(wi). Отметим, что ширина спектра является практической характеристикой случайного процесса, и вычисляется, как правило, для реальных частот по одностороннему спектру процесса.
При использовании предельного перехода T Þ ¥ и соответственно интегралов Фурье в выражениях (9.2.23), двусторонние функции дисперсий D(wi) заменяются функциями S(w), а односторонние - функциями G(w), которые называют соответственно дву- и односторонними функциями спектральной плотности случайных процессов. Такое же индексирование в научно-технической литературе применяют и для спектров корреляционных функций, а зачастую и для дискретных преобразований ковариационных функций вместо D(wi), хотя последнее применительно к ковариационным функциям более точно отражает физическую сущность величин. Но оно может считаться вполне приемлемым для сохранения общности математических описаний.
Эффективная ширина спектра для функций спектральной плотности случайных процессов:
Bk =
Gx(f) df /Gx(f)max = Sx(f) df /Sx(f)max = Kx(0) /Sx(f)max. (9.2.27)Соотношение неопределенности связывает эффективную ширину спектра Bk с эффективным интервалом ковариации Tk. Для его определения найдем произведение BkTk случайного процесса с использованием формул (9.1.10) и (9.2.27):
BkTk = 2
|Kx(t)|dt /Sx(f)max. (9.2.28)Оценка этого произведения и приводит к соотношению неопределенности:
BkTk ³ 1/2. (9.2.29)
Следовательно, с уменьшением эффективной ширины спектра увеличивается эффективный интервал ковариации случайного процесса, и наоборот.
Взаимные спектральные функции. Статистическая связь двух случайных процессов X(t) и Y(t) оценивается по функциям взаимной ковариации Kxy(t) или Kyx(t). Функции взаимной ковариации в общем случае являются произвольными, и соответственно функции взаимного спектра представляют собой комплексные выражения:
Sxy(wi) = (1/T)
Kxy(t) exp(-jwit) dt, (9.2.30)при этом:
Sxy(-w) = Sxy*(w) = Syx(w).
Квадратурным аналогом нормированной взаимной ковариационной функции или функции коэффициентов ковариации двух процессов (9.1.14) в спектральной области является функция когерентности, которая определяется выражением:
gxy2(w) = |Sxy(w)|2/(Sx(w)Sy(w)), (9.2.31)
и для любых w удовлетворяет неравенствам
0 £ gxy2(w) £ 1
Функция когерентности обычно используется при анализе линейных систем преобразования входной функции X(t) в выходную функцию Y(t) (рассмотрено ниже).
В заключение данного раздела еще раз отметим, что спектральные плотности случайных процессов и спектры плотности мощности, это одно и то же понятие. Оба термина используются достаточно широко в научно-технической литературе. Учитывая то обстоятельство, что понятие мощности по своему смыслу больше связано с энергетическими понятиями, а понятие спектральной плотности - с анализом сигналов и систем, при дальнейшем рассмотрении случайных сигналов и процессов будем использовать, в основном, понятие спектральной плотности или (для дискретных величин) спектров случайных сигналов и процессов.
9.3. Преобразования случайных функций [1, 26, 27].
Системы преобразования случайных функций. Пусть имеется система преобразования с одним входом, на который поступает (подается) входная случайная функция X(t) - функция воздействия или возбуждения, и с одним выходом, с которого снимается выходная функция Z(t) - отклик или выходная реакция системы. Система осуществляет преобразование X(t) Þ Z(t) и описывается определенным системным оператором трансформации Т - функцией, алгоритмом, набором правил преобразования входного сигнала в выходной. Обозначение операции преобразования: Z(t) = T[X(t)]. Символическое и полное отображение операции преобразования:
z(t) = h(t) ③ x(t-t) =
h(t)×x(t-t) dt.где h(t) - математическая функция импульсного отклика системы на единичное входное воздействие. Импульсный отклик определяет соответствующую частотную передаточную характеристику системы: h(t) - H(w).
Для неслучайных (детерминированных) входных сигналов соотношение между выходными и входными сигналами всегда однозначно задается системным оператором. В случае реализации на входе системы случайного входного процесса (случайного сигнала) тоже существует однозначное соответствие процессов на выходе и входе системы, однако при этом одновременно происходит изменение статистических характеристик выходного сигнала (математического ожидания, дисперсии, ковариационной функции и пр.).
Линейные и нелинейные системы составляют два основных класса систем обработки сигналов. Термин линейности означает, что система преобразования сигналов должна иметь произвольную, но в обязательном порядке линейную связь между входным сигналом (возбуждением) и выходным сигналом (откликом). В нелинейных системах связь между входным и выходным сигналом определяется произвольным нелинейным законом.
Основные системные операции линейных систем, из которых могут быть сформированы любые линейные операторы преобразования, это операции скалярного умножения, сдвига и сложения сигналов:
s(t) = c ´ a(t), s(t) = a(t-Dt), s(t) = a(t)+b(t).
Для нелинейных систем выделим важный тип безынерционных операций нелинейной трансформации сигнала, результаты которой зависят только от его входных значений. К ним относятся, например, операции квадратирования и логарифмирования сигнала:
y(t) = [s(t)]2, y(t) = log[s(t)].
Система считается линейной, если ее реакция на входные сигналы аддитивна (выполняется принцип суперпозиции сигналов) и однородна (выполняется принцип пропорционального подобия). Другими словами, отклик линейной системы на взвешенную сумму входных сигналов должен быть равен взвешенной сумме откликов на отдельные входные сигналы независимо от их количества и для любых весовых коэффициентов, в том числе комплексных.
Линейные системы могут быть неоднородными, если они осуществляют какое-либо линейное преобразование с прибавлением (вычитанием) заданной функции, т.е. операцию вида Z(t) = T[X(t)] = To[X(t)] + f(t).
Двухвходовая система описывается системным оператором Т, который связывает два входных воздействия, соответственно X(t) и Y(t), с выходной реакцией Z(t). Система считается линейной, если принципы аддитивности и однородности выполняются для обоих входов. Двухвходовая система может применяться, например, для суммирования двух случайных процессов с разными коэффициентами усиления их значений.
Z(t) = T[а(X1(t)+X2(t)), b(Y1(t)+Y2(t))] = a×T[X1(t),Y1(t)] + b×T[X2(t),Y2(t)].
Связь выходных статистических функций с входными. Для одновходовых систем при выполнении линейного преобразования Z(t) = T[X(t)] обычно ставится задача определения характеристик распределения Z(t) по известным характеристикам X(t).
Математическое ожидание выходного сигнала:
mz(t) = M{Z(t)} = M{T[X(t)]}.
Из теории линейных систем: линейный оператор можно выносить за знак математического ожидания. Отсюда следует:
mz(t) = T[M{X(t)}] = T[mx(t)], (9.3.1)
т.е. для определения функции математического ожидания выходного сигнала Z(t) достаточно выполнить преобразование тем же системным оператором функции математического ожидания входного сигнала X(t):
mz(t) = h(t) ③ mx(t-t). (9.3.2)
Корреляционная функция выходного сигнала:
Rz(t1,t2) = M{Z(t1)Z(t2)}= M{T1[X(t1)] T2[X(t2)]},
где Т1 и Т2 - один и тот же оператор Т по переменным соответственно t1 и t2, что позволяет вынести его за знак математического ожидания, сохраняя переменные:
Rz(t1,t2) = T1T2[M{X(t1)X(t2)}] =T1T2[Rx(t1,t2)], (9.3.3)
т.е. при известной функции корреляции входного сигнала функция корреляции выходного сигнала находится двойным преобразованием тем же оператором по двум аргументам.
При определении функции Rz(t) следует учесть порядок преобразования. Для произведения выходных сигналов z(t) и z(t+t) линейной системы можно записать: