Смекни!
smekni.com

Недостаток кислорода: миф или реальность? (стр. 3 из 6)

Следует обратить внимание на принципиальное различие роли океана и суши в регулировании атмосферных концентраций углекислого газа и кислорода. На суше круговороты кислорода и углекислого газа тесно связаны, при поглощении углекислого газа выделяется кислород и наоборот при мольном соотношении 1.05. Совершенно иная ситуация имеет место в океане, который является наиболее мощным поглотителем углекислого газа атмосферы, изымющим из нее около 7.3 Гт CO2 ежегодно (Prentice et al., 2001). Однако этот процесс связан с физико-химическими процессами растворения углекислого газа в морской воде и не приводит к возвращению в атмосферу молекулярного кислорода.

Проведенный выше анализ круговорота кислорода на суше приводит к выводу, что наземная биота является ежегодно выделяет в атмосферу 3 Гт кислорода (с учетом сжигания биомассы), а океан – 1 Гт. Антропогенное потребление кислорода в результате сжигания ископаемого топлива составляет 21-23 Гт O2, значит, ежегодные потери млекулярного кислорода атмосферой должны быть на уровне 17-19 Гт. На рис. 4А представлена динамика содержания кислорода в атмосфере, выраженная как снижение его массовых количеств по сравнению с уровнем 1990 г. (исходная информация по снижению содержания кислорода в ppm приведена в работах Keeling et al., 1996, Prentice et al., 2001). Годичные потери кислорода атмосферой, согласно приведенным на рис. XXА величинам, находятся в пределах 14-20 Гт O2, то есть очень близки к нашим балансовым оценкам.

Рис. 4. Динамика запаса молекулярного кислорода атмосферы за 1999-2000 гг. А - по отношению к уровню 1990 г., Б – в абсолютном выражении.

Наземная биота компенсирует в настоящее время лишь около 13% от антропогенного потребления кислорода, связанного со сжиганием ископаемого топлива. В результате имеет место постоянное снижение запасов молекулярного атмосферного кислорода. Однако в относительном выражении это снижение крайне незначительно из-за очень больших запасов молекулярного кислорода атмосферы (1 184 000 Гт O2). Годовое антропогенное потребление кислорода составляет лишь 0.0019% от его запаса в атмосфере, а снижение запаса кислорода – лишь 0.0016% (Рис. 4Б). При нынешних темпах потребления кислорода человечеству нужно более 600 лет, чтобы уменьшить содержание кислорода на 1%.

Реальный предел потенциальным возможностям человечества по использованию кислородного ресурса атмосферы определен планетарными запасами ископаемого топлива. Потенциальные запасы в кислородном эквиваленте оцениваются в 16 500 (Rogner, 1998), 17 500 (World Energy Council, 1993) и 24 320 Гт КЭ (Keeling et al., 1993). Если использовать наибольшую из цитированных оценок, легко подсчитать, что даже при полном использовании запасов ископаемого топлива из атмосферы может быть потреблено не более 2% кислорода. Добавим, что разведанные в настоящее время запасы ископаемого топлива составляют около 25% от потенциальных. Следовательно, возможности воздействия человека на содержание кислорода атмосферы оказываются невелики и не сравнимы по относительному уровню с воздействиями на концентрации малых газовых примесей атмосферы (углекислый газ, метан, оксиды азота и т. д.). Напомним, что за истекшее столетие содержание углекислого газа в атмосфере увеличилось на 32% (Prentice et al., 2001), что, в свою очередь, выразилось в значительном изменении климатической ситуации на планете.

Эволюция биосферного круговорота кислорода

Откуда же на нашей планете взялись столь большие запасы молекулярного кислорода, что даже современный уровень антропогенного воздействия на атмосферу не способен заметно их понизить? Более 4 млрд. лет назад, когда на Земле зародилась жизнь, атмосфера состояла из углекислого газа, азота, аммиака, водорода, метана и паров воды, но свободный кислород в ней отсутствовал (Одум, 1989, Воронов и др., 2002). Из-за отсутствия кислорода не существовало и озонового слоя, экранирующего ультрафиолетовое излучение Солнца, которое свободно достигало поверхности суши и океана. Поэтому жизнь могла развиваться только под защитой слоя воды. Древнейшая жизнь существовала, по-видимому, в виде анаэробных прокариотических организмов, получающих энергию и пищу от органических веществ абиогенного происхождения, образовавшегося еще раньше. Постепенно запасы органических веществ, образовавшихся в добиологический период существования Земли, были исчерпаны, и перед живыми организмами встала проблема по поиску альтернативного (по отношению к органическим веществам абиогенного происхождения) источника энергии. Таким источником стал солнечный свет, за счет энергии которого живые организмы стали осуществлять реакцию фотосинтеза. Первыми фотосинтетическими организмами могли быть анаэробные бактерии, подобные современным пурпурным или зеленым серобактериям (Заварзин, 1984).Следы анаэробного фотосинтеза в виде сульфатных минералов прослеживаются в отложениях возраста 3.5-4 млрд. лет. Однако этот тип фотосинтеза не приводит к образованию свободного молекулярного кислорода.

Оксигенный (то есть кислородопродуцирующий) фотосинтез появился около 2.7 млрд. лет назад (Башкин, 2002). Первоначально он осуществлялся прокариотическими организмами, близкими к современным цианобактериям. Именно аэробный фотосинтез положил начало наиболее масштабным биогеохимическим преобразованиям, приведшим к формированию окислительной атмосферы Земли. В атмосфере свободный кислород появился существенно позже, поскольку он в течение нескольких сотен миллионов лет расходовался на окисление различных восстановленных веществ, в первую очередь растворенных в морской воде ионов железа с выпадением в осадок окиси железа. Около 2 млрд. лет назад, когда была окислена вся масса недоокисленных соединений, начался процесс быстрого роста массы атмосферного кислорода. Стали развиваться формы аэробных организмов, использующих кислород для окисления органических веществ и тем самым получения энергии для существования. Аэробное окисление по сравнению с анаэробным брожением является более выгодным энергетическим процессом. Увеличение энергетических возможностей живых организмов создало основу для интенсификации метаболизма и усложнения их структуры. В результате 1.4 млрд. лет назад началось бурное развитие эукариотических организмов, а примерно 1.3 млрд. лет назад появились многоклеточные растения и животные (Воронов и др., 2002).

Количество свободного кислорода в атмосфере планеты между тем продолжало все увеличиваться. Под действием коротковолнового излучения молекулярный кислород (O2) превращается в озон (O3). Спектр поглощения озона приходится на ультрафиолетовый диапазон, в результате озоновый слой атмосферы (или, как его часто называют, озоновый экран) является барьером для ультрафиолетового излучения Солнца. Озон образовывался даже при минимальных концентрациях кислорода в атмосферном воздухе, но достаточную эффективность защиты от ультрафиолета озоновый экран приобрел при содержании кислорода, составлявшем 10% от современного уровня (точка Веркнера-Маршалла). Жизнь получила возможность выйти на сушу, которую и реализовала около 500 млн. лет назад (Воронов и др., 2002).

Процесс возрастания массы кислорода массы кислорода не был непрерывным (рис. 5). За последние 500 млн. лет общая тенденция к росту массы свободного кислорода маскировалась значительными колебаниями (Будыко и др., 1985). Эти колебания определялись соотношением продуктивности фотосинтеза и процессов разложения запасов органического вещества. Так, распространение влажного теплого климата на основной части поверхности суши в карбоновом периоде (270-330 млн. лет назад) привело, с одной стороны, к увеличению продуктивности фотосинтеза, с другой, к возрастанию массы захороненного органического вещества (поскольку в переувлажненных почвах процессы разложения лимитируются недостатком кислорода). В результате имел рост массы кислорода. Резкое понижение массы свободного кислорода в поздней перми-триасе (180-250 млн. лет назад) было связано с аридизацией суши, что снизило первичную продукцию и улучшило условия для разложения биомассы и органических веществ почвы.

Рис. 5. Динамика запаса свободного кислорода в атмосфере (по данным Будыко и др., (1985)).

Современная кислородная атмосфера планеты образовалась в результате двух процессов: 1) жизнедеятельности фотосинтезирующих организмов, от первичных оксигенных бактерий до современных покрытосеменных растений; 2) вывода органического углерода из биосферного круговорота. В процессе фотосинтеза кислород выделяется в свободном виде[2], в то время как углерод входит в состав органического вещества. Подавляющая часть органического вещества после ряда трансформаций (первичные продукты фотосинтеза, биомасса, детрит, гумус) окисляется живыми организмами с образованием углекислого газа. Однако в каждом из таких циклов небольшая часть органического вещества выводится из круговорота и захоранивается в осадочных породах. Так как аэробная биосфера существует уже около 2 млрд. лет, подавляющая часть углерода, входившего в состав первичной атмосферы, уже выведена из биосферного круговорота и находится в пассивном виде в осадочных породах литосферы. Причем в концентрированной форме (то есть в залежах ископаемого топлива) находится сравнительно небольшая часть захороненного углерода (24 320 Гт КЭ). Около 32 000 000 Гт КЭ органического вещества диспергировано в осадочных породах (Keeling et al., 1993) и практически недоступно для возвращения в биосферный круговорот. Кислород же, прежде соединенный с углеродом этого органического вещества, находится в атмосфере. Именно недоступность углерода органического вещества осадочных пород и объясняет столь малую потенциальную возможность человечества влиять на содержание кислорода атмосферы.