Смекни!
smekni.com

Недостаток кислорода: миф или реальность? (стр. 1 из 6)

Недостаток кислорода: миф или реальность?

Замолодчиков Д.Г.

доктор биологических наук, заместитель директора Центра по проблемам экологии и продуктивности лесов РАН, профессор кафедры общей экологии Биологического факультета МГУ им. М.В. Ломоносова

Введение

Энергетической основой современной цивилизации является сжигание ископаемого топлива. Оно сопровождается выделением в атмосферу продуктов сгорания, то есть углекислого газа, паров воды и ряда прочих примесей. Как ныне хорошо известно, углекислый газ является важным регулятором климата Земли. В результате эмиссий от сжигания ископаемого топлива и, в меньшей степени, от обезлесивания содержание углекислого газа в атмосфере повысилось более чем на 30% за последние 100 лет, что стало причиной усиления парникового эффекта атмосферы и глобального потепления климата. Негативные экологические, экономические и социальные проблемы, связанные с имеющимися и прогнозируемыми проявлениями глобальных изменений климата, привели к необходимости международной координации усилий по контролю эмиссий парниковых газов в атмосфере. В 1992 г. была заключена Рамочная конвенция ООН по изменению климата, в 1997 г появился Киотский протокол к этой конвенции, вступивший в действие после его ратификации Российской Федерацией в 2004 г.

Сжигание ископаемого топлива является двусторонним процессом, связанным не только с эмиссией продуктов сгорания в атмосферу, но и с потреблением из нее свободного кислорода. Вполне естественно предположить, что если увеличение запас углекислого газа в атмосфере приводит к явным негативным эффектам, то и уменьшение содержания кислорода вполне может грозить серьезными экологическими проблемами. Ведь кислород необходим человеку и другим аэробным живым организмам для дыхания, от содержания кислорода в воздухе в значительной степени зависит самочувствие людей. Многие из нас сами ощущали, как болезнен недостаток кислорода, оказавшись, например, в условиях высокогорья. Кроме того, из свободного кислорода формируется озоновый слой атмосферы, защищающий живые организмы от губительного ультрафиолетового излучения солнца. Если общее количество кислорода уменьшается, то и озоновый слой может истощаться, а ведь проблема сохранения озонового слоя была

И вот уже в средствах массовой информации и Интернете идет активное обсуждение кислородных проблем Земли, раздаются призывы к охране кислорода и введении лицензирования на его промышленное использование. «Однако, с каждым годом содержание кислорода в атмосфере снижается. Причин тому множество – вырубка лесов, автомобильные выхлопы, загрязнение окружающей среды токсичными выбросами заводов…». Это цитата не из экологической публикации, а из рекламы кондиционеров King Oxygen от компании GREE (Кислород…, 2004). Данный пример показывает, что проблема снижения запаса атмосферного кислорода настолько интересна для общества, что она даже может эксплуатироваться в целях достижения коммерческого успеха продукции.

И в то же время имеется сравнительно мало научных публикаций по проблеме снижения содержания атмосферного кислорода и современных изменениях биосферного круговорота кислорода, особенно в сравнении с громадным количеством публикаций по парниковым газам. Причины такого «пренебрежения» научных кругов данной проблемой, надеюсь, станут ясными по прочтении настоящей статьи, в которой будет представлены ответы на следующие вопросы:

1. Каковы величины современного антропогенного кислорода атмосферы?

2. Каково влияние человека на круговорот кислорода в современной биосфере?

3. Каким образом сформировалась современная кислородная атмосфера планеты?

4. Каковы последствия снижения запаса свободного кислорода для здоровья и самочувствия людей?

5. Следует ли регулировать промышленное потребление кислорода?

Антропогенное потребление кислорода

В современном мире основную часть энергии человечество получает за счет сжигания ископаемого топлива. Горение является типичной окислительно-восстановительной реакцией, в которой восстановителем выступает топливо (нефть, природный газ, каменный уголь), а окислителем – атмосферный кислород. Одним из продуктов этой реакции является углекислый газ, который попадает в атмосферу. Таким образом, открывается возможность оценки антропогенного потребления кислорода по величинам эмиссии углекислого газа. В свою очередь, величины эмиссии CO2 для различных регионов и стран мира оценены с высокой точностью в связи с участием этого газа в процессах глобального потепления.

Для пересчета из величин эмиссии углекислого газа в потребление кислорода надо ввести коэффициенты. Эти коэффициенты зависят от типа сжигаемого топлива. Например, если горит графит (С), то при образовании одной молекулы углекислого газа потребляется одна молекула кислорода (O2), и мольный коэффициент равен 1. В то же время при сгорании молекулы метана (CH4) образуется одна молекула CO2 и две молекулы воды (H2O), то есть потребляется две молекулы O2, а мольный коэффициент равен 2. По нашим расчетам, мольный коэффициент при сжигании газообразного топлива составляет 1.95 (наличие в природном газе этана, пропана и бутана понижает мольный коэффициент доминирующего метана), жидкого топлива – 1.54, твердого топлива – 1.03.

Для пересчетов в массу следует учесть молекулярные веса. Величины эмиссии углекислого газа обычно приводятся в единицах массы углекислого газа (молекулярный вес 44) или углерода (молекулярный вес 12), в то время как вес молекулы кислорода составляет 32. Следовательно, при сжигании газообразного топлива для пересчета из эмиссии углекислого газа в потребление кислорода следует использовать коэффициент 1.42 = (1.95*32)/44, жидкого топлива – 1.12, твердого – 0.75.

В соответствии с требованиями Рамочной конвенции ООН по изменению климата страны проводят учет антропогенных эмиссий углекислого газа и публикуют их в национальных сообщениях. При расчетах антропогенного потребления кислорода мы базировались на величинах эмиссий углекислого газа, обобщенных в обзорах «Мировые ресурсы» (World resources…, 2000, 2003). Для более детальной оценки вклада России были использованы величины из III Национального сообщения Российской Федерации (2002) по изменению климата. Приведенные в этих источниках величины эмиссии углекислого газа при сгорании) твердого, жидкого и газообразного топлива (включая эмиссии от сжигания попутного газа) пересчитывались в величины потребления кислорода. В расчетах не были использованы величины эмиссии углекислого газа, связанные с производством цемента, так как этот процесс не приводит к поглощению атмосферного кислорода.

Суммарная общемировая величина потребления кислорода от сжигания ископаемого топлива в 1990 г. составила 20.8 Гт год-1 (Табл. 1) или 0.65 ×1015 моль год-1, что близко к имеющимся литературным оценкам 0.58 ×1015 (Keeling et al., 1993) и 0.67±1.7 ×1015 моль год-1 (Keeling, Shertz, 1992). Средний мировой мольный коэффициент пересчета углекислый газ/кислород (зависящий от соотношения различных типов ископаемого топлива), согласно нашим расчетам, в 1990 г. был равен 1.40, что также очень близко к имеющейся литературной оценке 1.39 (Keeling et al., 1996). Для мировой экономики характерно снижение доли твердого топлива при возрастании роли газообразного, в. результате мольный коэффициент повышается. В 1999 г. в целом для мировой экономики он составил 1.42.

По общему антропогенному потреблению кислорода лидируют Соединенные Штаты Америки (24% от мирового потребления в 1990 г. и 25% в 1999 г.). Суммарная доля европейских стран (за исключением Российской Федерации) составляла 24% в 1990 г. и 21% в 1999 г. Снижение доли Европы как в абсолютном, так и в относительном выражении определяется экономическими изменениями в восточной части Германии (бывшая ГДР) и в бывших республиках СССР (в первую очередь Украина и Белоруссия). Наибольшее снижение (33%) потребления атмосферного кислорода демонстрирует Российская Федерация. Наибольшие темпы роста потребления кислорода имеют место в странах Ближнего Востока и Северной Африки (46%) и Латинской Америки (43%). Тем не менее, пока доля этих регионов в мировом потреблении кислорода сравнительно невелика (соответственно 7 и 4% в 1999 г.). На второе место по потреблению кислорода (после США) к 1999 году вышел Китай.

Таблица 1. Суммарные величины годового потребления атмосферного кислорода в результате сжигания ископаемого топлива

Страны и группы стран

Потребление O2

Изменение от 1990 к 1999, %

1990

1999

Гт

% от мирового

Гт

% от мирового

Германия

0.92

4.4

0.85

3.7

-7.2

Великобритания

0.57

2.7

0.62

2.7

9.6

Российская Федерация

2.59

12.4

1.72

7.5

-33.4

Прочие страны Европы

3.43

16.5

3.25

14.1

-5.4

Страны Ближнего Востока и Северной Африки

1.09

5.2

1.60

6.9

46.3

Прочие страны Африки

0.36

1.8

0.36

1.6

-0.3

Китай

1.87

9.0

2.54

11.0

36.1

Япония

1.07

5.1

1.22

5.3

14.0

Прочие страны Азии (без Ближнего Востока)

2.12

10.2

2.71

11.8

28.1

Австралия и Океания

0.28

1.4

0.34

1.5

19.5

Канада

0.46

2.2

0.56

2.4

21.5

США

5.01

24.1

5.84

25.4

16.6

Страны Центральной Америки и Карибского бассейна

0.45

2.2

0.54

2.3

19.0

Страны Южной Америки

0.60

2.9

0.86

3.7

42.6

Весь мир

20.81

100.0

22.99

100.0

10.5

В расчете на общую площадь страны (группы стран) первое место по потреблению кислорода занимает Япония, в которой при сжигании ископаемого топлива в год используется 32 т кислорода на 1 га площади (Рис. 1). Далее следуют Великобритания, Германия, прочие страны Европы и лишь на 5 месте США. В среднем по всему миру потребление кислорода составляет около 2 т кислорода на 1 га площади. Для Российской Федерации это значение почти в два раза меньше среднего мирового, что является выражением сравнительно малых объемов экономической активности в расчете на общую площадь страны.