4. Единого универсального «количества» в природе вообще не существует. Все количественные характеристики любого класса явлений неразрывным образом связаны с их качественными особенностями. Поэтому строгая индивидуальность качественных характеристик вещей дополняется абсолютной исключительностью того «количества», которое соответствует им и только им.
Глава 2. Что такое «сколько будет»?
В самом деле, что стоит за математическим знаком равенства, что это вообще означает «равняться» чему бы то ни было? Ведь если мы ставим своей задачей получить по возможности предельно конкретный ответ на поставленный с самого начала вопрос, мы обязаны до конца уяснить себе и эту его составляющую.
Очевидно, что и здесь прежде всего необходимо найти некое физическое (химическое, биологическое, социальное и так далее) содержание тех конкретных объектов, процессов, явлений, над которыми мы совершаем известные операции, и уже только потом восходить к каким‑то более высоким обобщениям.
Имеет смысл предположить, что в контексте равенства речь должна идти о том, что совокупность свойств, характеристик, качеств слагаемых объектов, которые с самого начала берутся нами в учет, обязана быть строго тождественна, или по меньшей мере эквивалентна сумме свойств, характеристик, качеств некоего интегрального образования, получающегося в результате нашего «сложения». Действительно, если нет такого тождества или такой эквивалентности, – нет (и вообще не может быть) никакого равенства. Математическое равенство, как впрочем, и все в математике, – вещь очень и очень строгая поэтому до тех пор, пока сохраняется хотя бы какое‑то – пусть даже микроскопическое – отличие, мы вправе говорить лишь о той или иной степени приближения к истине и не более того. Между тем никакой приблизительный результат нас удовлетворить не может, ибо математические задачи могут считаться решенными только там, где достигается абсолютная степень точности.
Но стоит нам только сформулировать такое предположение, как тут же появляется сильное сомнение в самой возможности достижения строгого тождества суммы исходных качеств с суммой конечных. Общие характеристики четырех метров колючей проволоки совсем не тождественны индивидуальным особенностям двух ежей и двух ужей. Интегральные свойства четырех единиц «домашнего скота» не тождественны качествам двух коров и двух лошадей. Причем нужно заметить, что такое сомнение по всей видимости заложено уже в самой природе человека, вернее сказать человеческого сознания, ибо с ним мы чуть ли не появляемся на свет.
Рассмотрим пример задачи, род которой, часто задают маленькие дети: кто «лучше», солдат, милиционер, или доктор? Слово «лучше» берется здесь в кавычки, по той простой причине, что чаще всего вообще непонятно, что именно имеет в виду ребенок. Но ведь ребенок‑то ищет точный ответ на то, что занимает его пытливую голову, – и, самое удивительное, пользуясь какой‑то своей логикой, находит его.
Анализ этой скрытой от внешнего взгляда логики показывает, что не знающий никаких формальных правил мышления ребенок тем не менее действует в полном соответствии со строгой методикой. В сущности то же самой, какой пользуются и отмеченные учеными степенями специалисты. Он выявляет условные основания количественного сравнения: скажем, «война», «порядок» и «болезнь» и ранжирует каждый из анализируемых объектов именно по ним. Поэтому по первому основанию (и совершенно справедливо) максимальную оценку получает солдат. Оно и понятно. Милиционеру, конечно, приходится быть готовым к встрече с каким‑нибудь хулиганом, но все же до первого ему далеко. И потом, в пороховом дыму на поле славы в нарядном мундире в красивом строю под развевающимися знаменами солдат выглядит куда импозантней второго и уж тем более третьего. О докторе и вообще говорить не приходится, к тому же его белый халат и въевшийся запах карболки отдают чем‑то не очень мужественным. По второму приоритет, разумеется, принадлежит милиционеру, наконец, по третьему – отдается доктору. Честное слово, не знаю, что думают по этому поводу глупые девчонки, но в достойной золота по мрамору системе ценностей взрастающего мужчины неоспоримый приоритет, по полному на то праву, принадлежит воинской доблести. Отсюда два солдата оказываются куда «лучше», чем два врача или два милиционера и даже все четверо последних вместе. Поэтому умей он считать, он с легкостью вывел бы логически безупречное заключение о том, что два врача и два милиционера вовсе не эквивалентны четырем солдатам.
Абсолютно строгое и, заметим, методологически выверенное решение! Кстати, оно со всей наглядностью показывает две весьма знаковые в рассматриваемом нами контексте вещи. Во‑первых, то, что для ребенка, сознание которого еще полностью свободно от каких бы то ни было штампов, «два плюс два равно четыре» – это вовсе не абсолютная истина в последней инстанции. Во‑вторых, то, что способность к выполнению сложных интеллектуальных операций формируется у всех нас еще в каком‑то «досознательном» возрасте прямо из «воздуха» той этнокультурной среды, в которой мы появляемся на свет, и что именно она является непременным условием всего последующего интеллектуального развития человека. Просто сам этот «воздух» уже напитан многим из того, что за тысячелетия развития нашей цивилизации прочно вошло в состав диалектики.
Находимое ребенком решение – и с этим, наверное, согласятся многие – в значительной мере отражает реальную действительность: в боевой обстановке «среднестатистический» солдат и в самом деле куда более эффективен, нежели «среднестатистический» милиционер или (тем более) врач. Если, конечно, оценивать их всех именно по тому заранее избранному основанию, на каком строит свои выводы ребенок.
Но все же было бы абсолютно неправильно вслед за ним экстраполировать полученный вывод на каких‑то конкретных персонажей. Этот, как и любой другой количественный результат, должен быть верен только для того уровня явлений, на котором он был получен. Получен же он был для совершенно отвлеченных бездушных и бесплотных начал. А именно – для некоторых совершенно абстрактных «функциональных машин», одна из которых приспособлена для выполнения, скажем, штыковой атаки, другая – для приведения в чувство каких‑то хулиганов, третья для залечивания тех ран, которые могут получить и условный «солдат», и столь же условный «милиционер» в ходе выполнения своих профессиональных задач (ну, и, разумеется, для исцеления их маленьких пушистых любимцев). Но стоит только распространить вывод ребенка на «живого» дядю Степу, на известного всем доктора Айболита или на бравых вояк из ставшего классикой «мультика» о бременских музыкантах, как тут же обнаружится какая‑то ошибка. И мужественный милиционер дядя Степа, и отважный доктор Айболит все в той же системе ценностей окажутся куда «лучше» этих жалких трусов.
Все это приводит к мысли о том, что в эти, казалось бы, безупречные расчеты вкрадывается какая‑то серьезная методологическая ошибка. Как только от совершенно отвлеченных или даже полуабстрактных рассуждений мы переходим к «сложению» вполне реальных (или идентифицируемых с какими‑то реальными людьми) персонажей, так сразу обнаруживается явно выраженная количественная аномалия, ибо конечный результат сложения оказывается иногда прямо противоположным тому, который прогнозируется очерченной только что логикой. И именно эта аномалия, именно обнаруживающаяся здесь непонятная «дельта количества» (которая к тому же может иметь еще и разные математические знаки) показывает, что в наших расчетах оказывается неучтенным какое‑то таинственное дополнительное свойство, которое либо изначально было присуще всем нашим героям, но так и не обнаружилось нами, либо вновь возникало в самом процессе «сложения». Словом, вырисовывается незримое деформирующее логику действие какой‑то таинственной «дельты качества».
Впрочем, ничего таинственного в этой «дельте» на самом деле нет, и в действительности мы легко учитываем ее влияние во всех своих расчетах. Вспомним: еще на уроках физики в средней школе мы привыкали внимательно следить не только за символами математических операций и знаками вводимых нами величин, но также и за физическим их содержанием, или, другими словами, их качественной определенностью. Действительно, мы умножали метры на секунды, массу на ускорение и так далее, но в результате всех этих вычислений нами получалось что‑то совершенно отличное и от метров, и от секунд, и от килограммов. Поэтому многие ошибки были следствием не одной только арифметической неаккуратности, но и недостаточной внимательности в оценке физического, иными словами, качественного состава рассчитываемых нами величин. Поначалу калейдоскоп перемен того объективного содержания, которое стояло за всеми вводимыми величинами, вызывал у нас трудность. Однако со временем мы научались легко справляться с ней и автоматически отслеживать живую конкретику каждой переменной, включаемой в наши расчеты.