Смекни!
smekni.com

«Информационные технологии» (стр. 4 из 8)

Вернемся к классификации моделей. По способу построения моделей различают «экспериментальное» и «теоретическое» моделирование. Такое противопоставление весьма условно не только в силу взаимосвязи и обоюдного влияния этих видов моделирования, но и наличия таких «гибридных» форм, как «мысленный эксперимент».

По характеру той стороны объекта, которая подвергается моделированию, уместно различать моделирование структуры объекта и моделирование его поведения.

В исследованиях на народнохозяйственном уровне чаще применяются структурные модели, поскольку для планирования и управления большое значение имеют взаимосвязи подсистем. Типичными структурными моделями являются модели межотраслевых связей. Функциональные модели широко применяются в экономическом регулировании, когда на поведение объекта ("выход") воздействуют путем изменения "входа". Примером может служить модель поведения потребителей в условиях товарно-денежных отношений. Один и тот же объект может описываться одновременно и структурой, и функциональной моделью. Так, например, для планирования отдельной отраслевой системы используется структурная модель, а на народнохозяйственном уровне каждая отрасль может быть представлена функциональной моделью.

В зависимости от сферы приложения различают моделирование в маркетинге, менеджменте, в финансово-банковских операциях и т.д.

Классификация по уровням моделирования показывает «глубину» создаваемых и рассматриваемых моделей. В экономике принципиально различают два уровня моделирования: производственно-технологический и социально-экономический.

Первый уровень - производственно-технологический. К нему относится описание производственных возможностей изучаемых экономических систем. При математическом моделировании производственных возможностей экономической системы ее обычно разбивают на отдельные, «элементарные» в данной модели, производственные единицы. После этого необходимо описать, во-первых, производственные возможности каждой из единиц, и, во-вторых, возможности обмена ресурсами производства и продукцией между «элементарными» производственными единицами. Производственные возможности описывают при помощи так называемых производственных функций различных типов, а при описании возможностей обмена главную роль играют балансовые соотношения.

На уровне социально-экономических процессов определяется, каким образом реализуются производственные возможности, описанные при моделировании производственно-технологического уровня экономической системы. Существует огромное число вариантов принятия решений и распределения заданий, укладывающихся в технологические ограничения, которые задают производственные возможности системы. В математических моделях выделяют специальные переменные, значения которых определяют единственный вариант развития экономического процесса. Эти переменные принято называть управляющими воздействиями или управлениями. На уровне социально-экономических процессов определяется механизм выбора управляющих воздействий.

Итак, для описания функционирования экономической системы необходимо смоделировать оба уровня: производственно-технологический и социально-экономический. Как показывает опыт, описание второго уровня провести гораздо сложнее.

Существует, однако, большое число проблем, в которых описание социально-экономического уровня не является необходимым. Это так называемые нормативные проблемы, в которых необходимо указать, как надо задать управляющие воздействия, чтобы достичь наилучших в каком-то смысле результатов. При этом необходимо точно определить, что понимается под наилучшим результатом, т.е. сформулировать критерий, по которому можно оценивать и сравнивать различные управляющие воздействия. Критерий (также называют целевой функцией) является функцией переменных модели изучаемой системы. Обычно предполагается, что имеется единственный критерий выбора управления системой. Ищется такое управление, чтобы критерий достигал максимального (выпуск продукции, прибыль и т.д.) или минимального (затраты) значения. Такое значение управления находится методами оптимизации и называется оптимальным.

Поэтому для одной и той же задачи можно предложить две различные модели с различными критериями оптимизации. Например, мы можем предпочесть максимизировать прибыль, или с не меньшим основанием исходить из другой целевой установки - минимизации затрат. Эти критерии не эквивалентны, так как величина затрат может быть функцией переменных, находящихся под контролем данной фирмы, тогда как величина прибыли зависит от внешних неуправляемых факторов, например от ситуации на рынке сбыта, складывающейся под влиянием конкурентов. Использование соответствующих этим критериям оптимизационных моделей при одинаковых ограничениях не обязательно приведет к получению одинаковых оптимальных решений

Другим принципом классификации может служить деление моделей на статические и динамические. В статических моделях экономики все зависимости относятся к одному моменту или периоду времени. Динамические модели характеризуют изменения экономических процессов во времени. По длительности рассматриваемого периода времени различаются модели краткосрочного (до года), среднесрочного (до 5 лет), долгосрочного (10-15 и более лет) прогнозирования и планирования. Само время в моделях экономических процессов может изменяться либо непрерывно, либо дискретно.

А.Н. Кочергин[15] предлагает рассматривать и такие классификационные признаки, как природа моделируемых явлений, степень точности, объем отображаемых свойств и др. Но, следует признать, что данные признаки не являются существенными, потому подобные классификации выглядят несколько искусственно.

Детально рассмотрим специфические (присущие не всем видам моделей) классификации математических моделей экономических процессов.

3. Специфика и особенности моделирования в экономике

3.1. Классификация экономико-математических моделей

В научной литературе математические модели экономических процессов принято называть экономико-математическими моделями. Именно данный вид моделей активно используется в экономике. Математическая модель может возникнуть тремя путями:

1. В результате прямого изучения реального процесса. Такие модели называются феноменологическими.

2. В результате процесса дедукции. Новая модель является частным случаем некоторой общей модели. Такие модели называются асимптотическими.

3. В результате процесса индукции. Новая модель является обобщением элементарных моделей. Такие модели называют моделями ансамблей.

Существует два типа математических моделей: модели описания и модели объяснения[16]. Модель описания не предполагает содержательных утверждений о сущности изучаемого круга явлений. Для моделей описания характерно то, что здесь соответствие между формальной и физической структурой не обусловлено какой-либо закономерностью и носит характер единичного факта. Модели объяснения представляют собой качественно иной вид познавательных моделей. Речь идет о тех случаях, когда структура объекта (или система) находит себе соответствие в математическом образе в силу внутренней необходимости. Именно модели объяснения интересны для экономистов, поскольку они обладают способностью объяснения и прогнозирования. Для практического использования экономической науки требуются экономико-математическая модели, использование которых позволит не только разобраться с состоянием экономики, но и достаточно точно сказать, что будет с экономикой через какое-то время, каковы последствия, какая социально-экономическая цена принимаемых решений.[17]

По целевому назначению экономико-математические модели делятся на теоретико-аналитические, используемые в исследованиях общих свойств и закономерностей экономических процессов, и прикладные, применяемые в решении конкретных экономических задач (модели экономического анализа, прогнозирования, управления).

Экономико-математические модели могут предназначаться для исследования разных сторон народного хозяйства (в частности, его производственно-технологической, социальной, территориальной структур) и его отдельных частей. При классификации моделей по исследуемым экономическим процессам и содержательной проблематике можно выделить модели народного хозяйства в целом и его подсистем - отраслей, регионов и т.д., комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т.д.

Все экономические модели в общем можно разбить на два класса:

· модели, предназначенные для познания свойств реальных или гипотетических экономических систем. Значения параметров таких моделей невозможно оценить по эмпирическим данным.

· модели, параметры которых в принципе могут быть оценены по опытным данным. Эти модели могут служить для прогнозирования или принятия решений.

Второй класс моделей в свою очередь делится на три подкласса:

· модель фирмы (предприятия) - может быть использована как основа для принятия решений на уровне фирм и аналогичных им организаций;

· модели централизованно планируемого народного хозяйства - основа для принятия решений на уровне централизованного планирующего органа;

· модели децентрализованной экономики или отдельного ее сектора - имеют применение при прогнозировании или могут служить основой для экономического регулирования.

Одна из наиболее важных методологических проблем построения экономических моделей - какими уравнениями описывать такие модели - дифференциальными или конечно-разностными. Один из аргументов в пользу представления экономических моделей в виде дифференциальных уравнений - даже при отсутствии непрерывных наблюдений экономических переменных прогнозирование непрерывных траекторий изменения этих переменных может представлять большую ценность.