Например, предположим, что по убеждению руководства фирмы (предприятия) объем сбыта ее продукции тесно связан с национальным доходом страны. Тогда для прогнозирования сбыта очень полезно иметь прогноз непрерывной траектории изменения национального дохода, хотя измерения этой переменной и производятся только один раз в год. Непрерывная модель позволяет получить такой прогноз по дискретным наблюдениям экономических переменных за прошедший период времени.
Несмотря на то, что многие модели, рассматриваемые в теоретической литературе, принадлежат к непрерывному типу, в прикладных экономических исследованиях модели обычно представляют в виде систем конечно-разностных уравнений. Это, по-видимому, объясняется трудностью оценки параметров систем стохастических дифференциальных уравнений по дискретным наблюдениям значений переменных. Однако для получения таких оценок нет принципиальных препятствий. Более того, методы, разработанные для оценки параметров дискретных моделей, могут быть с успехом применены и для оценки параметров непрерывных моделей.
Наибольшее распространение в экономике вообще и в процессе управления при оптимизации принимаемых решений в частности получают экономико-математические модели - идеальные (строящиеся и исследуемые без применения каких-либо специальных приспособлений, лишь в голове человека и на бумаге) или физические (реализуемые с помощью средств электроники и вычислительной техники).
Приложения математики в экономике разнообразны. На рис. 1 представлена классификация совокупности экономико-математических моделей в зависимости от используемого математического «инструментария».
Рис. 1. Классификация экономико-математических моделей.
Из рисунка видно насколько многогранно проникновение математики в экономику. Это тенденция свойственна не только экономике. Теории математики широко применяются в других науках, что вызвано естественным процессом развития научного знания, который, в свое время, потребовал привлечения нового и более совершенного математического аппарата, способствовал появлению новых разделов математики[18].
Однако не следует думать, что математизация экономических исследований воспринимается в экономических кругах как абсолют. Так, нобелевский лауреат Р. Лукас в 1993 году писал[19]: «Можно ли приобрести знания о реальности с помощью пера и бумаги? Математические модели – это вымышленные миры, придуманные экономистами. Все рассмотренные мною модели могли бы быть, но не были сопоставлены с наблюдениями. Несмотря на это, я полагаю, что процесс создания моделей, в который мы вовлечены, совершенно необходим, и я не могу представить себе, как без него мы могли бы организовать и использовать массу имеющихся данных».
3.2 Проблема истины в моделях экономических процессов
Как уже говорилось выше, моделирование предполагает использование абстрагирования и идеализации. Отображая существенные (с точки зрения цели исследования) свойства оригинала и отвлекаясь от несущественного, модель выступает как некоторый абстрактный идеализированный объект. Однако приходится считаться с тем, что моделирование может не дать полного знания об оригинале. Эта черта моделирования особенно существенна в том случае, когда его предметом являются сложные системы, поведение которых зависит от значительного числа взаимосвязанных факторов различной природы. Экономические процессы, безусловно, являются сложными, которые зависят от многих, не только чисто экономических, но и от политических, природных и даже психологических факторов.
В ходе познания такие системы отображаются в различных моделях, при этом одни из моделей могут быть родственными друг другу, другие же могут оказаться глубоко различными. При этом различия моделей могут быть не только на «теоретическом» уровне (различные экономические концепции, лежащие в основе модели), но и на уровне «практической» реализации (различные виды математических моделей, см. рис.1). Поэтому возникает проблема сравнения (оценки адекватности) разных моделей одного и того же явления, что требует формулировки точно определяемых критериев сравнения.
Что же следует понимать под истинностью модели? Если истинность вообще - «соотношение наших знаний объективной действительности»[20], то истинность модели означает соответствие модели объекту, а ложность модели - отсутствие такого соответствия. Такое определение является необходимым, но недостаточным. Требуются дальнейшие уточнения, основанные на принятие во внимание условий, на основе которых модель того или иного типа воспроизводит изучаемое явление. Например, условия сходства модели и объекта в математическом моделировании, основанном на физических аналогиях, предполагающих при различии физических процессов в модели и объекте тождество математической формы, в которой выражаются их общие закономерности, являются более общими, более абстрактными.
Таким образом, при построении тех или иных моделей всегда сознательно отвлекаются от некоторых сторон, свойств и даже отношений, в силу чего заведомо допускается несохранение сходства между моделью и оригиналом по ряду параметров, которые вообще не входят в формулирование условий сходства.
Истинность - свойство знания, а объекты материального мира не истинны, не ложны, просто существуют. В модели реализованы двоякого рода знания:
· знание самой модели (ее структуры, процессов, функций) как системы, созданной с целью воспроизведения некоторого объекта.
· теоретические знания, посредством которых модель была построена.
Имея в виду именно теоретические соображения и методы, лежащие в основе построения модели, можно ставить вопросы о том, насколько верно и полно данная модель отражает объект.
Модель можно рассматривать не только как орудие проверки того, действительно ли существуют такие связи, отношения, структуры, закономерности, которые формулируются в данной теории и выполняются в модели. Успешная работа модели есть практическое доказательство истинности теории.
События, произошедшие в мировой экономике за последние 3 года, поставили под вопрос адекватность и истинность моделей экономических процессов, которыми ученые пользовались в течение последних 30-40 лет.
Возможно, причиной этому было не только качество моделей, построенных учеными, но и изменение самого объекта моделирования – мировой экономики, особенно соотношение доли реального и финансового секторов. Чрезвычайно сложно построить модель для изменяющейся сложной системы (мировая экономика, безусловно, является таковой), которая была бы адекватной при изменении структуры и связей внутри системы.
3.3 Экономические объекты – сложные динамические системы
Большинство объектов, изучаемых экономической наукой, может быть охарактеризовано кибернетическим понятием сложная система. Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность, единство. Важным качеством любой системы является эмерджентность - наличие таких свойств, которые не присущи ни одному из элементов, входящих в систему. Поэтому при изучении систем недостаточно пользоваться методом их расчленения на элементы с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований – в том, что почти не существует экономических объектов, которые можно было бы рассматривать как отдельные (внесистемные) элементы.
Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между системой и средой. Экономика страны (мира) обладает всеми признаками очень сложной системы. Она объединяет огромное число элементов, отличается многообразием внутренних связей и связей с другими системами (природная среда, экономика других стран и т.д.). В народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы.
Сложность экономики иногда рассматривалась как обоснование невозможности ее моделирования, изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности. И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь моделирование может дать результаты, которые нельзя получить другими способами исследования.
Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать еще неформализованные проблемы, а также ситуации, где математическое моделирование недостаточно эффективно.
Другим препятствием для моделирования является динамичность экономических процессов, изменчивость их параметров и структурных отношений. Вследствие этого экономические процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за экономическими процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей экономики требуется корректировать исходную информацию с учетом ее запаздывания.