Поскольку экономико-математические задачи могут быть сложны по своей структуре, то часто случается, что известные алгоритмы и программы для ЭВМ не позволяют решить задачу в первоначальном виде. Если невозможно в короткий срок разработать новые алгоритмы и программы, исходную постановку задачи и модель упрощают: снимают и объединяют условия, уменьшают число факторов, нелинейные соотношения заменяют линейными, усиливают детерминизм модели и т.д.
Недостатки, которые не удается исправить на промежуточных этапах моделирования, устраняются в последующих циклах. Но результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно быстро получить полезные результаты, а затем перейти к созданию более совершенной модели, дополняемой новыми условиями, включающей уточненные математические зависимости.
По мере развития и усложнения экономико-математического моделирования его отдельные этапы обособляются в специализированные области исследований, усиливаются различия между теоретико-аналитическими и прикладными моделями, происходит дифференциация моделей по уровням абстракции и идеализации.
Теория математического анализа моделей экономики развилась в особую ветвь современной математики - математическую экономику. Модели, изучаемые в рамках математической экономики, теряют непосредственную связь с экономической реальностью; они имеют дело с исключительно идеализированными экономическими объектами и ситуациями. При построении таких моделей главным принципом является не столько приближение к реальности, сколько получение возможно большего числа аналитических результатов посредством математических доказательств. Ценность этих моделей состоит в том, что они служат теоретической базой для моделей прикладного типа.
Довольно самостоятельными областями исследований становятся подготовка и обработка экономической информации и разработка математического обеспечения экономических задач (создание баз данных и банков информации, программ автоматизированного построения моделей и программного сервиса для экономистов-пользователей). На этапе практического использования моделей ведущую роль должны играть специалисты в соответствующей области экономического анализа, планирования, управления. Главным участком работы экономистов-математиков остается постановка и формализация экономических задач и синтез процесса экономико-математического моделирования.
Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Моделирование позволяет заранее предвидеть ход событий и тенденции развития, присущие управляемой системе, выяснить условия ее существования и установить режим деятельности с учетом влияния разных факторов. При этом чрезвычайно детализированная модель не всегда целесообразна, так как это излишне усложняет модель и создает трудности для ее анализа.
Сфера практического применения метода моделирования ограничивается возможностями и эффективностью формализации экономических проблем и ситуаций, а также состоянием информационного, математического, технического обеспечения используемых моделей. Стремление во что бы то ни стало применить математическую модель может не дать хороших результатов из-за отсутствия хотя бы некоторых необходимых условий.
И все же, применение математических методов способствует решению ряда практических проблем.
Во-первых, математические методы позволяют упорядочить систему экономической информации, выявлять недостатки в имеющейся информации и вырабатывать требования для подготовки новой информации или ее корректировки. Разработка и применение экономико-математических моделей указывают пути совершенствования экономической информации, ориентированной на решение определенной системы задач планирования и управления. Прогресс в информационном обеспечении планирования и управления опирается на бурно развивающиеся технические и программные средства информатики.
Во-вторых, математические методы способствуют повышению точности экономических расчетов. Формализация экономических задач и применение ЭВМ многократно ускоряют типовые, массовые расчеты, повышают точность и сокращают трудоемкость, позволяют проводить многовариантные экономические обоснования сложных мероприятий, недоступные при господстве «ручной» технологии.
В-третьих, благодаря применению метода моделирования значительно усиливаются возможности конкретного количественного анализа; изучаются факторы, оказывающие влияние на экономические процессы, количественная оценка последствий изменения условий развития экономических объектов и т.п.
В-четвертых, посредством математического моделирования удается решать такие экономические задачи, которые иными средствами решить практически невозможно, например, нахождение оптимального варианта народнохозяйственного плана или имитация народнохозяйственных мероприятий.
В целом, можно уверенно сказать, что человечество обладает глубоким пониманием методологии применения методов математического моделирования в экономических процессах.
1. первый
2. второй
3. третий
4.
[1] Экономико-математическое моделирование. Учебник. Под ред. Дрогобыцкого И.Н. – М.: Экзамен, 2006. С.16.
[2] Богомолов А.С. Античная философия. М., МГУ, 1985
[3] Аверьянов А.Н. Системное познание мира: методологические проблемы. М., 1991, С. 204, 261–263
[4] Батоpоев К.Б. Кибеpнетика и метод аналогий. - М., Высшая школа, 1974
[5] Штофф В.А. Моделирование и философии. - М.: Наука, 1966. С.7
[6] Штофф В.А. Моделирование и философии. - М.: Наука, 1966.С.8
[7] Штофф В.А. Моделирование и философии. - М.: Наука, 1966. С.22.
[8] Батороев К.Б. Кибернетика и метод аналогий. - М.: Высшая школа, 1974. С.15.
[9] Pocket Oxford Dictionary, March 1994, Oxford Univercity Press, 1994. (Электронная версия)
[10] Советский энциклопедический словарь (под ред. А.М. Прохорова) — М., Советская Энциклопедия, 1980, С. 828.
[11] Алтухов В.Л., Шапошников В.Ф. О перестройке мышления: философско-методологические аспекты. - М., 1988. С.47.
[12] Новик И.Б.О философских вопросах кибернетического моделирования. - М., Знание ,1964. С. 16.
[13] Фролов И.Т. Гносеологические проблемы моделировании. - М.: Наука, 1961. С.20
[14] Андрющенко М.Н., Советов Б.Я., Яковлев А.С. и др. Философские основы моделирования сложных систем управления // Системный подход в технологических науках (Методологические основы): Сборник научных трудов – Л.: Изд. АН СССР, 1989, с.67-82.
[15] Кочергин А.Н. Моделиpoвание мышления М., Наука, 1969.
[16] Философия науки. Под ред. Лебедева С.А. – М.: Академический проект, 2010. С.252-253.
[17] Шимко П.Д., Власов М.П. Моделиpование экономических процессов. – Ростоа-на-Дону, Феникс, 2005. С.3.
[18] А.Ф. Кудряшев О математизации научного знания // Философские науки, 1975, №4, с.137
[19] Экономико-математическое моделирование. Учебник. Под ред. Дрогобыцкого И.Н. – М.: Экзамен, 2006. С.15.
[20] Штофф В.А. Моделиpование и философия. - М., Наука, 1966. С.178.
[21] Смирнова А.К. Понятие неопределенности экономических систем и подходы к ее оценке.//Вестник МГТУ, том 11, №2, 2008 г. (стр.241-246). С. 242-243.